1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
Require Import ZArith.
Require Import Classical.
Require Export Reals.
(* real numbers *)
Lemma real_expr: (0 <= 9 * 4)%R.
ergo.
Qed.
Lemma powerRZ_translation: (powerRZ 2 15 < powerRZ 2 17)%R.
ergo.
Qed.
Dp_debug.
Dp_timeout 3.
(* module renamings *)
Module M.
Parameter t : Set.
End M.
Lemma test_module_0 : forall x:M.t, x=x.
ergo.
Qed.
Module N := M.
Lemma test_module_renaming_0 : forall x:N.t, x=x.
ergo.
Qed.
Dp_predefined M.t => "int".
Lemma test_module_renaming_1 : forall x:N.t, x=x.
ergo.
Qed.
(* Coq lists *)
Require Export List.
Lemma test_pol_0 : forall l:list nat, l=l.
ergo.
Qed.
Parameter nlist: list nat -> Prop.
Lemma poly_1 : forall l, nlist l -> True.
intros.
simplify.
Qed.
(* user lists *)
Inductive list (A:Set) : Set :=
| nil : list A
| cons: forall a:A, list A -> list A.
Fixpoint app (A:Set) (l m:list A) {struct l} : list A :=
match l with
| nil => m
| cons a l1 => cons A a (app A l1 m)
end.
Lemma entail: (nil Z) = app Z (nil Z) (nil Z) -> True.
intros; ergo.
Qed.
(* polymorphism *)
Require Import List.
Inductive mylist (A:Set) : Set :=
mynil : mylist A
| mycons : forall a:A, mylist A -> mylist A.
Parameter my_nlist: mylist nat -> Prop.
Goal forall l, my_nlist l -> True.
intros.
simplify.
Qed.
(* First example with the 0 and the equality translated *)
Goal 0 = 0.
simplify.
Qed.
(* Examples in the Propositional Calculus
and theory of equality *)
Parameter A C : Prop.
Goal A -> A.
simplify.
Qed.
Goal A -> (A \/ C).
simplify.
Qed.
Parameter x y z : Z.
Goal x = y -> y = z -> x = z.
ergo.
Qed.
Goal ((((A -> C) -> A) -> A) -> C) -> C.
ergo.
Qed.
(* Arithmetic *)
Open Scope Z_scope.
Goal 1 + 1 = 2.
yices.
Qed.
Goal 2*x + 10 = 18 -> x = 4.
simplify.
Qed.
(* Universal quantifier *)
Goal (forall (x y : Z), x = y) -> 0=1.
try zenon.
ergo.
Qed.
Goal forall (x: nat), (x + 0 = x)%nat.
induction x0; ergo.
Qed.
(* No decision procedure can solve this problem
Goal forall (x a b : Z), a * x + b = 0 -> x = - b/a.
*)
(* Functions definitions *)
Definition fst (x y : Z) : Z := x.
Goal forall (g : Z -> Z) (x y : Z), g (fst x y) = g x.
simplify.
Qed.
(* Eta-expansion example *)
Definition snd_of_3 (x y z : Z) : Z := y.
Definition f : Z -> Z -> Z := snd_of_3 0.
Goal forall (x y z z1 : Z), snd_of_3 x y z = f y z1.
simplify.
Qed.
(* Inductive types definitions - call to dp/injection function *)
Inductive even : Z -> Prop :=
| even_0 : even 0
| even_plus2 : forall z : Z, even z -> even (z + 2).
(* Simplify and Zenon can't prove this goal before the timeout
unlike CVC Lite *)
Goal even 4.
ergo.
Qed.
Definition skip_z (z : Z) (n : nat) := n.
Definition skip_z1 := skip_z.
Goal forall (z : Z) (n : nat), skip_z z n = skip_z1 z n.
yices.
Qed.
(* Axioms definitions and dp_hint *)
Parameter add : nat -> nat -> nat.
Axiom add_0 : forall (n : nat), add 0%nat n = n.
Axiom add_S : forall (n1 n2 : nat), add (S n1) n2 = S (add n1 n2).
Dp_hint add_0.
Dp_hint add_S.
(* Simplify can't prove this goal before the timeout
unlike zenon *)
Goal forall n : nat, add n 0 = n.
induction n ; yices.
Qed.
Definition pred (n : nat) : nat := match n with
| 0%nat => 0%nat
| S n' => n'
end.
Goal forall n : nat, n <> 0%nat -> pred (S n) <> 0%nat.
yices.
(*zenon.*)
Qed.
Fixpoint plus (n m : nat) {struct n} : nat :=
match n with
| 0%nat => m
| S n' => S (plus n' m)
end.
Goal forall n : nat, plus n 0%nat = n.
induction n; ergo.
Qed.
(* Mutually recursive functions *)
Fixpoint even_b (n : nat) : bool := match n with
| O => true
| S m => odd_b m
end
with odd_b (n : nat) : bool := match n with
| O => false
| S m => even_b m
end.
Goal even_b (S (S O)) = true.
ergo.
(*
simplify.
zenon.
*)
Qed.
(* sorts issues *)
Parameter foo : Set.
Parameter ff : nat -> foo -> foo -> nat.
Parameter g : foo -> foo.
Goal (forall x:foo, ff 0 x x = O) -> forall y, ff 0 (g y) (g y) = O.
yices.
(*zenon.*)
Qed.
(* abstractions *)
Parameter poly_f : forall A:Set, A->A.
Goal forall x:nat, poly_f nat x = poly_f nat x.
ergo.
(*zenon.*)
Qed.
(* Anonymous mutually recursive functions : no equations are produced
Definition mrf :=
fix even2 (n : nat) : bool := match n with
| O => true
| S m => odd2 m
end
with odd2 (n : nat) : bool := match n with
| O => false
| S m => even2 m
end for even.
Thus this goal is unsolvable
Goal mrf (S (S O)) = true.
zenon.
*)
|