blob: eacbfeac703417f9fe9ed3032b7cd5a01e14ec15 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Ccalgo
open Term
type rule=
Ax of constr
| SymAx of constr
| Refl of term
| Trans of proof*proof
| Congr of proof*proof
| Inject of proof*pconstructor*int*int
and proof =
private {p_lhs:term;p_rhs:term;p_rule:rule}
(** Proof smart constructors *)
val prefl:term -> proof
val pcongr: proof -> proof -> proof
val ptrans: proof -> proof -> proof
val psym: proof -> proof
val pax : (Ccalgo.term * Ccalgo.term) Ccalgo.Constrhash.t ->
Ccalgo.Constrhash.key -> proof
val psymax : (Ccalgo.term * Ccalgo.term) Ccalgo.Constrhash.t ->
Ccalgo.Constrhash.key -> proof
val pinject : proof -> pconstructor -> int -> int -> proof
(** Proof building functions *)
val equal_proof : forest -> int -> int -> proof
val edge_proof : forest -> (int*int)*equality -> proof
val path_proof : forest -> int -> ((int*int)*equality) list -> proof
val congr_proof : forest -> int -> int -> proof
val ind_proof : forest -> int -> pa_constructor -> int -> pa_constructor -> proof
(** Main proof building function *)
val build_proof :
forest ->
[ `Discr of int * pa_constructor * int * pa_constructor
| `Prove of int * int ] -> proof
|