blob: 02e03a97c2c0345e16482ae8063f3e1915bc3f45 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Util
open Term
open Names
type cinfo =
{ci_constr: constructor; (* inductive type *)
ci_arity: int; (* # args *)
ci_nhyps: int} (* # projectable args *)
type term =
Symb of constr
| Product of sorts_family * sorts_family
| Eps of identifier
| Appli of term*term
| Constructor of cinfo (* constructor arity + nhyps *)
type patt_kind =
Normal
| Trivial of types
| Creates_variables
type ccpattern =
PApp of term * ccpattern list
| PVar of int
type pa_constructor =
{ cnode : int;
arity : int;
args : int list}
module PacMap : Map.S with type key = pa_constructor
type forest
type state
type rule=
Congruence
| Axiom of constr * bool
| Injection of int * pa_constructor * int * pa_constructor * int
type from=
Goal
| Hyp of constr
| HeqG of constr
| HeqnH of constr*constr
type 'a eq = {lhs:int;rhs:int;rule:'a}
type equality = rule eq
type disequality = from eq
type explanation =
Discrimination of (int*pa_constructor*int*pa_constructor)
| Contradiction of disequality
| Incomplete
val constr_of_term : term -> constr
val debug : (Pp.std_ppcmds -> unit) -> Pp.std_ppcmds -> unit
val forest : state -> forest
val axioms : forest -> (constr, term * term) Hashtbl.t
val epsilons : forest -> pa_constructor list
val empty : int -> Proof_type.goal Tacmach.sigma -> state
val add_term : state -> term -> int
val add_equality : state -> constr -> term -> term -> unit
val add_disequality : state -> from -> term -> term -> unit
val add_quant : state -> identifier -> bool ->
int * patt_kind * ccpattern * patt_kind * ccpattern -> unit
val tail_pac : pa_constructor -> pa_constructor
val find : forest -> int -> int
val find_pac : forest -> int -> pa_constructor -> int
val term : forest -> int -> term
val get_constructor_info : forest -> int -> cinfo
val subterms : forest -> int -> int * int
val join_path : forest -> int -> int ->
((int * int) * equality) list * ((int * int) * equality) list
type quant_eq=
{qe_hyp_id: identifier;
qe_pol: bool;
qe_nvars:int;
qe_lhs: ccpattern;
qe_lhs_valid:patt_kind;
qe_rhs: ccpattern;
qe_rhs_valid:patt_kind}
type pa_fun=
{fsym:int;
fnargs:int}
type matching_problem
module PafMap: Map.S with type key = pa_fun
val make_fun_table : state -> Intset.t PafMap.t
val do_match : state ->
(quant_eq * int array) list ref -> matching_problem Stack.t -> unit
val init_pb_stack : state -> matching_problem Stack.t
val paf_of_patt : (term, int) Hashtbl.t -> ccpattern -> pa_fun
val find_instances : state -> (quant_eq * int array) list
val execute : bool -> state -> explanation option
(*type pa_constructor
module PacMap:Map.S with type key=pa_constructor
type term =
Symb of Term.constr
| Eps
| Appli of term * term
| Constructor of Names.constructor*int*int
type rule =
Congruence
| Axiom of Names.identifier
| Injection of int*int*int*int
type equality =
{lhs : int;
rhs : int;
rule : rule}
module ST :
sig
type t
val empty : unit -> t
val enter : int -> int * int -> t -> unit
val query : int * int -> t -> int
val delete : int -> t -> unit
val delete_list : int list -> t -> unit
end
module UF :
sig
type t
exception Discriminable of int * int * int * int * t
val empty : unit -> t
val find : t -> int -> int
val size : t -> int -> int
val get_constructor : t -> int -> Names.constructor
val pac_arity : t -> int -> int * int -> int
val mem_node_pac : t -> int -> int * int -> int
val add_pacs : t -> int -> pa_constructor PacMap.t ->
int list * equality list
val term : t -> int -> term
val subterms : t -> int -> int * int
val add : t -> term -> int
val union : t -> int -> int -> equality -> int list * equality list
val join_path : t -> int -> int ->
((int*int)*equality) list*
((int*int)*equality) list
end
val combine_rec : UF.t -> int list -> equality list
val process_rec : UF.t -> equality list -> int list
val cc : UF.t -> unit
val make_uf :
(Names.identifier * (term * term)) list -> UF.t
val add_one_diseq : UF.t -> (term * term) -> int * int
val add_disaxioms :
UF.t -> (Names.identifier * (term * term)) list ->
(Names.identifier * (int * int)) list
val check_equal : UF.t -> int * int -> bool
val find_contradiction : UF.t ->
(Names.identifier * (int * int)) list ->
(Names.identifier * (int * int))
*)
|