1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4use: "q_MLast.cmo pa_macro.cmo" i*)
(* $Id: q_coqast.ml4 11309 2008-08-06 10:30:35Z herbelin $ *)
open Util
open Names
open Libnames
open Q_util
let is_meta s = String.length s > 0 && s.[0] == '$'
let purge_str s =
if String.length s == 0 || s.[0] <> '$' then s
else String.sub s 1 (String.length s - 1)
IFDEF OCAML308 THEN DEFINE NOP END
IFDEF OCAML309 THEN DEFINE NOP END
IFDEF CAMLP5 THEN DEFINE NOP END
let anti loc x =
let e =
let loc =
IFDEF NOP THEN
loc
ELSE
(1, snd loc - fst loc)
END
in <:expr< $lid:purge_str x$ >>
in
<:expr< $anti:e$ >>
(* We don't give location for tactic quotation! *)
let loc = dummy_loc
let dloc = <:expr< Util.dummy_loc >>
let mlexpr_of_ident id =
<:expr< Names.id_of_string $str:Names.string_of_id id$ >>
let mlexpr_of_name = function
| Names.Anonymous -> <:expr< Names.Anonymous >>
| Names.Name id ->
<:expr< Names.Name (Names.id_of_string $str:Names.string_of_id id$) >>
let mlexpr_of_dirpath dir =
let l = Names.repr_dirpath dir in
<:expr< Names.make_dirpath $mlexpr_of_list mlexpr_of_ident l$ >>
let mlexpr_of_qualid qid =
let (dir, id) = repr_qualid qid in
<:expr< make_qualid $mlexpr_of_dirpath dir$ $mlexpr_of_ident id$ >>
let mlexpr_of_reference = function
| Libnames.Qualid (loc,qid) -> <:expr< Libnames.Qualid $dloc$ $mlexpr_of_qualid qid$ >>
| Libnames.Ident (loc,id) -> <:expr< Libnames.Ident $dloc$ $mlexpr_of_ident id$ >>
let mlexpr_of_located f (loc,x) = <:expr< ($dloc$, $f x$) >>
let mlexpr_of_loc loc = <:expr< $dloc$ >>
let mlexpr_of_by_notation f = function
| Genarg.AN x -> <:expr< Genarg.AN $f x$ >>
| Genarg.ByNotation (loc,s) -> <:expr< Genarg.ByNotation $dloc$ $str:s$ >>
let mlexpr_of_intro_pattern = function
| Genarg.IntroWildcard -> <:expr< Genarg.IntroWildcard >>
| Genarg.IntroAnonymous -> <:expr< Genarg.IntroAnonymous >>
| Genarg.IntroFresh id -> <:expr< Genarg.IntroFresh (mlexpr_of_ident $dloc$ id) >>
| Genarg.IntroIdentifier id ->
<:expr< Genarg.IntroIdentifier (mlexpr_of_ident $dloc$ id) >>
| Genarg.IntroOrAndPattern _ | Genarg.IntroRewrite _ ->
failwith "mlexpr_of_intro_pattern: TODO"
let mlexpr_of_ident_option = mlexpr_of_option (mlexpr_of_ident)
let mlexpr_of_or_metaid f = function
| Tacexpr.AI a -> <:expr< Tacexpr.AI $f a$ >>
| Tacexpr.MetaId (_,id) -> <:expr< Tacexpr.AI $anti loc id$ >>
let mlexpr_of_quantified_hypothesis = function
| Rawterm.AnonHyp n -> <:expr< Rawterm.AnonHyp $mlexpr_of_int n$ >>
| Rawterm.NamedHyp id -> <:expr< Rawterm.NamedHyp $mlexpr_of_ident id$ >>
let mlexpr_of_or_var f = function
| Rawterm.ArgArg x -> <:expr< Rawterm.ArgArg $f x$ >>
| Rawterm.ArgVar id -> <:expr< Rawterm.ArgVar $mlexpr_of_located mlexpr_of_ident id$ >>
let mlexpr_of_hyp = mlexpr_of_or_metaid (mlexpr_of_located mlexpr_of_ident)
let mlexpr_of_occs =
mlexpr_of_pair
mlexpr_of_bool (mlexpr_of_list (mlexpr_of_or_var mlexpr_of_int))
let mlexpr_of_occurrences f = mlexpr_of_pair mlexpr_of_occs f
let mlexpr_of_hyp_location = function
| occs, Tacexpr.InHyp ->
<:expr< ($mlexpr_of_occurrences mlexpr_of_hyp occs$, Tacexpr.InHyp) >>
| occs, Tacexpr.InHypTypeOnly ->
<:expr< ($mlexpr_of_occurrences mlexpr_of_hyp occs$, Tacexpr.InHypTypeOnly) >>
| occs, Tacexpr.InHypValueOnly ->
<:expr< ($mlexpr_of_occurrences mlexpr_of_hyp occs$, Tacexpr.InHypValueOnly) >>
let mlexpr_of_clause cl =
<:expr< {Tacexpr.onhyps=
$mlexpr_of_option (mlexpr_of_list mlexpr_of_hyp_location)
cl.Tacexpr.onhyps$;
Tacexpr.concl_occs= $mlexpr_of_occs cl.Tacexpr.concl_occs$} >>
let mlexpr_of_red_flags {
Rawterm.rBeta = bb;
Rawterm.rIota = bi;
Rawterm.rZeta = bz;
Rawterm.rDelta = bd;
Rawterm.rConst = l
} = <:expr< {
Rawterm.rBeta = $mlexpr_of_bool bb$;
Rawterm.rIota = $mlexpr_of_bool bi$;
Rawterm.rZeta = $mlexpr_of_bool bz$;
Rawterm.rDelta = $mlexpr_of_bool bd$;
Rawterm.rConst = $mlexpr_of_list (mlexpr_of_by_notation mlexpr_of_reference) l$
} >>
let mlexpr_of_explicitation = function
| Topconstr.ExplByName id -> <:expr< Topconstr.ExplByName $mlexpr_of_ident id$ >>
| Topconstr.ExplByPos (n,_id) -> <:expr< Topconstr.ExplByPos $mlexpr_of_int n$ >>
let mlexpr_of_binding_kind = function
| Rawterm.Implicit -> <:expr< Rawterm.Implicit >>
| Rawterm.Explicit -> <:expr< Rawterm.Explicit >>
let mlexpr_of_binder_kind = function
| Topconstr.Default b -> <:expr< Topconstr.Default $mlexpr_of_binding_kind b$ >>
| Topconstr.TypeClass (b,b') -> <:expr< Topconstr.TypeClass $mlexpr_of_pair mlexpr_of_binding_kind mlexpr_of_binding_kind (b,b')$ >>
let rec mlexpr_of_constr = function
| Topconstr.CRef (Libnames.Ident (loc,id)) when is_meta (string_of_id id) ->
anti loc (string_of_id id)
| Topconstr.CRef r -> <:expr< Topconstr.CRef $mlexpr_of_reference r$ >>
| Topconstr.CFix (loc,_,_) -> failwith "mlexpr_of_constr: TODO"
| Topconstr.CCoFix (loc,_,_) -> failwith "mlexpr_of_constr: TODO"
| Topconstr.CArrow (loc,a,b) ->
<:expr< Topconstr.CArrow $dloc$ $mlexpr_of_constr a$ $mlexpr_of_constr b$ >>
| Topconstr.CProdN (loc,l,a) -> <:expr< Topconstr.CProdN $dloc$ $mlexpr_of_list
(mlexpr_of_triple (mlexpr_of_list (mlexpr_of_pair (fun _ -> dloc) mlexpr_of_name)) mlexpr_of_binder_kind mlexpr_of_constr) l$ $mlexpr_of_constr a$ >>
| Topconstr.CLambdaN (loc,l,a) -> <:expr< Topconstr.CLambdaN $dloc$ $mlexpr_of_list (mlexpr_of_triple (mlexpr_of_list (mlexpr_of_pair (fun _ -> dloc) mlexpr_of_name)) mlexpr_of_binder_kind mlexpr_of_constr) l$ $mlexpr_of_constr a$ >>
| Topconstr.CLetIn (loc,_,_,_) -> failwith "mlexpr_of_constr: TODO"
| Topconstr.CAppExpl (loc,a,l) -> <:expr< Topconstr.CAppExpl $dloc$ $mlexpr_of_pair (mlexpr_of_option mlexpr_of_int) mlexpr_of_reference a$ $mlexpr_of_list mlexpr_of_constr l$ >>
| Topconstr.CApp (loc,a,l) -> <:expr< Topconstr.CApp $dloc$ $mlexpr_of_pair (mlexpr_of_option mlexpr_of_int) mlexpr_of_constr a$ $mlexpr_of_list (mlexpr_of_pair mlexpr_of_constr (mlexpr_of_option (mlexpr_of_located mlexpr_of_explicitation))) l$ >>
| Topconstr.CCases (loc,_,_,_,_) -> failwith "mlexpr_of_constr: TODO"
| Topconstr.CHole (loc, None) -> <:expr< Topconstr.CHole $dloc$ None >>
| Topconstr.CHole (loc, Some _) -> failwith "mlexpr_of_constr: TODO CHole (Some _)"
| Topconstr.CNotation(_,ntn,l) ->
<:expr< Topconstr.CNotation $dloc$ $mlexpr_of_string ntn$
$mlexpr_of_list mlexpr_of_constr l$ >>
| Topconstr.CPatVar (loc,n) ->
<:expr< Topconstr.CPatVar $dloc$ $mlexpr_of_pair mlexpr_of_bool mlexpr_of_ident n$ >>
| _ -> failwith "mlexpr_of_constr: TODO"
let mlexpr_of_occ_constr =
mlexpr_of_occurrences mlexpr_of_constr
let mlexpr_of_red_expr = function
| Rawterm.Red b -> <:expr< Rawterm.Red $mlexpr_of_bool b$ >>
| Rawterm.Hnf -> <:expr< Rawterm.Hnf >>
| Rawterm.Simpl o -> <:expr< Rawterm.Simpl $mlexpr_of_option mlexpr_of_occ_constr o$ >>
| Rawterm.Cbv f ->
<:expr< Rawterm.Cbv $mlexpr_of_red_flags f$ >>
| Rawterm.Lazy f ->
<:expr< Rawterm.Lazy $mlexpr_of_red_flags f$ >>
| Rawterm.Unfold l ->
let f1 = mlexpr_of_by_notation mlexpr_of_reference in
let f = mlexpr_of_list (mlexpr_of_occurrences f1) in
<:expr< Rawterm.Unfold $f l$ >>
| Rawterm.Fold l ->
<:expr< Rawterm.Fold $mlexpr_of_list mlexpr_of_constr l$ >>
| Rawterm.Pattern l ->
let f = mlexpr_of_list mlexpr_of_occ_constr in
<:expr< Rawterm.Pattern $f l$ >>
| Rawterm.CbvVm -> <:expr< Rawterm.CbvVm >>
| Rawterm.ExtraRedExpr s ->
<:expr< Rawterm.ExtraRedExpr $mlexpr_of_string s$ >>
let rec mlexpr_of_argtype loc = function
| Genarg.BoolArgType -> <:expr< Genarg.BoolArgType >>
| Genarg.IntArgType -> <:expr< Genarg.IntArgType >>
| Genarg.IntOrVarArgType -> <:expr< Genarg.IntOrVarArgType >>
| Genarg.RefArgType -> <:expr< Genarg.RefArgType >>
| Genarg.PreIdentArgType -> <:expr< Genarg.PreIdentArgType >>
| Genarg.IntroPatternArgType -> <:expr< Genarg.IntroPatternArgType >>
| Genarg.IdentArgType -> <:expr< Genarg.IdentArgType >>
| Genarg.VarArgType -> <:expr< Genarg.VarArgType >>
| Genarg.StringArgType -> <:expr< Genarg.StringArgType >>
| Genarg.QuantHypArgType -> <:expr< Genarg.QuantHypArgType >>
| Genarg.OpenConstrArgType b -> <:expr< Genarg.OpenConstrArgType $mlexpr_of_bool b$ >>
| Genarg.ConstrWithBindingsArgType -> <:expr< Genarg.ConstrWithBindingsArgType >>
| Genarg.BindingsArgType -> <:expr< Genarg.BindingsArgType >>
| Genarg.RedExprArgType -> <:expr< Genarg.RedExprArgType >>
| Genarg.SortArgType -> <:expr< Genarg.SortArgType >>
| Genarg.ConstrArgType -> <:expr< Genarg.ConstrArgType >>
| Genarg.ConstrMayEvalArgType -> <:expr< Genarg.ConstrMayEvalArgType >>
| Genarg.List0ArgType t -> <:expr< Genarg.List0ArgType $mlexpr_of_argtype loc t$ >>
| Genarg.List1ArgType t -> <:expr< Genarg.List1ArgType $mlexpr_of_argtype loc t$ >>
| Genarg.OptArgType t -> <:expr< Genarg.OptArgType $mlexpr_of_argtype loc t$ >>
| Genarg.PairArgType (t1,t2) ->
let t1 = mlexpr_of_argtype loc t1 in
let t2 = mlexpr_of_argtype loc t2 in
<:expr< Genarg.PairArgType $t1$ $t2$ >>
| Genarg.ExtraArgType s -> <:expr< Genarg.ExtraArgType $str:s$ >>
let rec mlexpr_of_may_eval f = function
| Rawterm.ConstrEval (r,c) ->
<:expr< Rawterm.ConstrEval $mlexpr_of_red_expr r$ $f c$ >>
| Rawterm.ConstrContext ((loc,id),c) ->
let id = mlexpr_of_ident id in
<:expr< Rawterm.ConstrContext (loc,$id$) $f c$ >>
| Rawterm.ConstrTypeOf c ->
<:expr< Rawterm.ConstrTypeOf $mlexpr_of_constr c$ >>
| Rawterm.ConstrTerm c ->
<:expr< Rawterm.ConstrTerm $mlexpr_of_constr c$ >>
let mlexpr_of_binding_kind = function
| Rawterm.ExplicitBindings l ->
let l = mlexpr_of_list (mlexpr_of_triple mlexpr_of_loc mlexpr_of_quantified_hypothesis mlexpr_of_constr) l in
<:expr< Rawterm.ExplicitBindings $l$ >>
| Rawterm.ImplicitBindings l ->
let l = mlexpr_of_list mlexpr_of_constr l in
<:expr< Rawterm.ImplicitBindings $l$ >>
| Rawterm.NoBindings ->
<:expr< Rawterm.NoBindings >>
let mlexpr_of_binding = mlexpr_of_pair mlexpr_of_binding_kind mlexpr_of_constr
let mlexpr_of_constr_with_binding =
mlexpr_of_pair mlexpr_of_constr mlexpr_of_binding_kind
let mlexpr_of_move_location f = function
| Tacexpr.MoveAfter id -> <:expr< Tacexpr.MoveAfter $f id$ >>
| Tacexpr.MoveBefore id -> <:expr< Tacexpr.MoveBefore $f id$ >>
| Tacexpr.MoveToEnd b -> <:expr< Tacexpr.MoveToEnd $mlexpr_of_bool b$ >>
let mlexpr_of_induction_arg = function
| Tacexpr.ElimOnConstr c ->
<:expr< Tacexpr.ElimOnConstr $mlexpr_of_constr_with_binding c$ >>
| Tacexpr.ElimOnIdent (_,id) ->
<:expr< Tacexpr.ElimOnIdent $dloc$ $mlexpr_of_ident id$ >>
| Tacexpr.ElimOnAnonHyp n ->
<:expr< Tacexpr.ElimOnAnonHyp $mlexpr_of_int n$ >>
let mlexpr_of_clause_pattern _ = failwith "mlexpr_of_clause_pattern: TODO"
let mlexpr_of_pattern_ast = mlexpr_of_constr
let mlexpr_of_entry_type = function
_ -> failwith "mlexpr_of_entry_type: TODO"
let mlexpr_of_match_pattern = function
| Tacexpr.Term t -> <:expr< Tacexpr.Term $mlexpr_of_pattern_ast t$ >>
| Tacexpr.Subterm (ido,t) ->
<:expr< Tacexpr.Subterm $mlexpr_of_option mlexpr_of_ident ido$ $mlexpr_of_pattern_ast t$ >>
let mlexpr_of_match_context_hyps = function
| Tacexpr.Hyp (id,l) ->
let f = mlexpr_of_located mlexpr_of_name in
<:expr< Tacexpr.Hyp $f id$ $mlexpr_of_match_pattern l$ >>
let mlexpr_of_match_rule f = function
| Tacexpr.Pat (l,mp,t) -> <:expr< Tacexpr.Pat $mlexpr_of_list mlexpr_of_match_context_hyps l$ $mlexpr_of_match_pattern mp$ $f t$ >>
| Tacexpr.All t -> <:expr< Tacexpr.All $f t$ >>
let mlexpr_of_message_token = function
| Tacexpr.MsgString s -> <:expr< Tacexpr.MsgString $str:s$ >>
| Tacexpr.MsgInt n -> <:expr< Tacexpr.MsgInt $mlexpr_of_int n$ >>
| Tacexpr.MsgIdent id -> <:expr< Tacexpr.MsgIdent $mlexpr_of_hyp id$ >>
let rec mlexpr_of_atomic_tactic = function
(* Basic tactics *)
| Tacexpr.TacIntroPattern pl ->
let pl = mlexpr_of_list (mlexpr_of_located mlexpr_of_intro_pattern) pl in
<:expr< Tacexpr.TacIntroPattern $pl$ >>
| Tacexpr.TacIntrosUntil h ->
<:expr< Tacexpr.TacIntrosUntil $mlexpr_of_quantified_hypothesis h$ >>
| Tacexpr.TacIntroMove (idopt,idopt') ->
let idopt = mlexpr_of_ident_option idopt in
let idopt'= mlexpr_of_move_location mlexpr_of_hyp idopt' in
<:expr< Tacexpr.TacIntroMove $idopt$ $idopt'$ >>
| Tacexpr.TacAssumption ->
<:expr< Tacexpr.TacAssumption >>
| Tacexpr.TacExact c ->
<:expr< Tacexpr.TacExact $mlexpr_of_constr c$ >>
| Tacexpr.TacExactNoCheck c ->
<:expr< Tacexpr.TacExactNoCheck $mlexpr_of_constr c$ >>
| Tacexpr.TacVmCastNoCheck c ->
<:expr< Tacexpr.TacVmCastNoCheck $mlexpr_of_constr c$ >>
| Tacexpr.TacApply (b,false,cb) ->
<:expr< Tacexpr.TacApply $mlexpr_of_bool b$ False $mlexpr_of_list mlexpr_of_constr_with_binding cb$ >>
| Tacexpr.TacElim (false,cb,cbo) ->
let cb = mlexpr_of_constr_with_binding cb in
let cbo = mlexpr_of_option mlexpr_of_constr_with_binding cbo in
<:expr< Tacexpr.TacElim False $cb$ $cbo$ >>
| Tacexpr.TacElimType c ->
<:expr< Tacexpr.TacElimType $mlexpr_of_constr c$ >>
| Tacexpr.TacCase (false,cb) ->
let cb = mlexpr_of_constr_with_binding cb in
<:expr< Tacexpr.TacCase False $cb$ >>
| Tacexpr.TacCaseType c ->
<:expr< Tacexpr.TacCaseType $mlexpr_of_constr c$ >>
| Tacexpr.TacFix (ido,n) ->
let ido = mlexpr_of_ident_option ido in
let n = mlexpr_of_int n in
<:expr< Tacexpr.TacFix $ido$ $n$ >>
| Tacexpr.TacMutualFix (b,id,n,l) ->
let b = mlexpr_of_bool b in
let id = mlexpr_of_ident id in
let n = mlexpr_of_int n in
let f =mlexpr_of_triple mlexpr_of_ident mlexpr_of_int mlexpr_of_constr in
let l = mlexpr_of_list f l in
<:expr< Tacexpr.TacMutualFix $b$ $id$ $n$ $l$ >>
| Tacexpr.TacCofix ido ->
let ido = mlexpr_of_ident_option ido in
<:expr< Tacexpr.TacCofix $ido$ >>
| Tacexpr.TacMutualCofix (b,id,l) ->
let b = mlexpr_of_bool b in
let id = mlexpr_of_ident id in
let f = mlexpr_of_pair mlexpr_of_ident mlexpr_of_constr in
let l = mlexpr_of_list f l in
<:expr< Tacexpr.TacMutualCofix $b$ $id$ $l$ >>
| Tacexpr.TacCut c ->
<:expr< Tacexpr.TacCut $mlexpr_of_constr c$ >>
| Tacexpr.TacAssert (t,ipat,c) ->
let ipat = mlexpr_of_located mlexpr_of_intro_pattern ipat in
<:expr< Tacexpr.TacAssert $mlexpr_of_option mlexpr_of_tactic t$ $ipat$
$mlexpr_of_constr c$ >>
| Tacexpr.TacGeneralize cl ->
<:expr< Tacexpr.TacGeneralize
$mlexpr_of_list
(mlexpr_of_pair mlexpr_of_occ_constr mlexpr_of_name) cl$ >>
| Tacexpr.TacGeneralizeDep c ->
<:expr< Tacexpr.TacGeneralizeDep $mlexpr_of_constr c$ >>
| Tacexpr.TacLetTac (na,c,cl,b) ->
let na = mlexpr_of_name na in
let cl = mlexpr_of_clause_pattern cl in
<:expr< Tacexpr.TacLetTac $na$ $mlexpr_of_constr c$ $cl$
$mlexpr_of_bool b$ >>
(* Derived basic tactics *)
| Tacexpr.TacSimpleInductionDestruct (isrec,h) ->
<:expr< Tacexpr.TacSimpleInductionDestruct $mlexpr_of_bool isrec$
$mlexpr_of_quantified_hypothesis h$ >>
| Tacexpr.TacInductionDestruct (isrec,ev,l) ->
<:expr< Tacexpr.TacInductionDestruct $mlexpr_of_bool isrec$ $mlexpr_of_bool ev$
$mlexpr_of_list (mlexpr_of_quadruple
(mlexpr_of_list mlexpr_of_induction_arg)
(mlexpr_of_option mlexpr_of_constr_with_binding)
(mlexpr_of_pair
(mlexpr_of_option (mlexpr_of_located mlexpr_of_intro_pattern))
(mlexpr_of_option (mlexpr_of_located mlexpr_of_intro_pattern)))
(mlexpr_of_option mlexpr_of_clause)) l$ >>
(* Context management *)
| Tacexpr.TacClear (b,l) ->
let l = mlexpr_of_list (mlexpr_of_hyp) l in
<:expr< Tacexpr.TacClear $mlexpr_of_bool b$ $l$ >>
| Tacexpr.TacClearBody l ->
let l = mlexpr_of_list (mlexpr_of_hyp) l in
<:expr< Tacexpr.TacClearBody $l$ >>
| Tacexpr.TacMove (dep,id1,id2) ->
<:expr< Tacexpr.TacMove $mlexpr_of_bool dep$
$mlexpr_of_hyp id1$
$mlexpr_of_move_location mlexpr_of_hyp id2$ >>
(* Constructors *)
| Tacexpr.TacLeft (ev,l) ->
<:expr< Tacexpr.TacLeft $mlexpr_of_bool ev$ $mlexpr_of_binding_kind l$>>
| Tacexpr.TacRight (ev,l) ->
<:expr< Tacexpr.TacRight $mlexpr_of_bool ev$ $mlexpr_of_binding_kind l$>>
| Tacexpr.TacSplit (ev,b,l) ->
<:expr< Tacexpr.TacSplit
($mlexpr_of_bool ev$,$mlexpr_of_bool b$,$mlexpr_of_binding_kind l$)>>
| Tacexpr.TacAnyConstructor (ev,t) ->
<:expr< Tacexpr.TacAnyConstructor $mlexpr_of_bool ev$ $mlexpr_of_option mlexpr_of_tactic t$>>
| Tacexpr.TacConstructor (ev,n,l) ->
let n = mlexpr_of_or_metaid mlexpr_of_int n in
<:expr< Tacexpr.TacConstructor $mlexpr_of_bool ev$ $n$ $mlexpr_of_binding_kind l$>>
(* Conversion *)
| Tacexpr.TacReduce (r,cl) ->
let l = mlexpr_of_clause cl in
<:expr< Tacexpr.TacReduce $mlexpr_of_red_expr r$ $l$ >>
| Tacexpr.TacChange (occl,c,cl) ->
let l = mlexpr_of_clause cl in
let g = mlexpr_of_option mlexpr_of_occ_constr in
<:expr< Tacexpr.TacChange $g occl$ $mlexpr_of_constr c$ $l$ >>
(* Equivalence relations *)
| Tacexpr.TacReflexivity -> <:expr< Tacexpr.TacReflexivity >>
| Tacexpr.TacSymmetry ido -> <:expr< Tacexpr.TacSymmetry $mlexpr_of_clause ido$ >>
| Tacexpr.TacTransitivity c -> <:expr< Tacexpr.TacTransitivity $mlexpr_of_constr c$ >>
(* Automation tactics *)
| Tacexpr.TacAuto (n,lems,l) ->
let n = mlexpr_of_option (mlexpr_of_or_var mlexpr_of_int) n in
let lems = mlexpr_of_list mlexpr_of_constr lems in
let l = mlexpr_of_option (mlexpr_of_list mlexpr_of_string) l in
<:expr< Tacexpr.TacAuto $n$ $lems$ $l$ >>
| Tacexpr.TacTrivial (lems,l) ->
let l = mlexpr_of_option (mlexpr_of_list mlexpr_of_string) l in
let lems = mlexpr_of_list mlexpr_of_constr lems in
<:expr< Tacexpr.TacTrivial $lems$ $l$ >>
(*
| Tacexpr.TacExtend (s,l) ->
let l = mlexpr_of_list mlexpr_of_tactic_arg l in
let $dloc$ = MLast.loc_of_expr l in
<:expr< Tacexpr.TacExtend $mlexpr_of_string s$ $l$ >>
*)
| _ -> failwith "Quotation of atomic tactic expressions: TODO"
and mlexpr_of_tactic : (Tacexpr.raw_tactic_expr -> MLast.expr) = function
| Tacexpr.TacAtom (loc,t) ->
<:expr< Tacexpr.TacAtom $dloc$ $mlexpr_of_atomic_tactic t$ >>
| Tacexpr.TacThen (t1,[||],t2,[||]) ->
<:expr< Tacexpr.TacThen $mlexpr_of_tactic t1$ [||] $mlexpr_of_tactic t2$ [||]>>
| Tacexpr.TacThens (t,tl) ->
<:expr< Tacexpr.TacThens $mlexpr_of_tactic t$ $mlexpr_of_list mlexpr_of_tactic tl$>>
| Tacexpr.TacFirst tl ->
<:expr< Tacexpr.TacFirst $mlexpr_of_list mlexpr_of_tactic tl$ >>
| Tacexpr.TacSolve tl ->
<:expr< Tacexpr.TacSolve $mlexpr_of_list mlexpr_of_tactic tl$ >>
| Tacexpr.TacTry t ->
<:expr< Tacexpr.TacTry $mlexpr_of_tactic t$ >>
| Tacexpr.TacOrelse (t1,t2) ->
<:expr< Tacexpr.TacOrelse $mlexpr_of_tactic t1$ $mlexpr_of_tactic t2$ >>
| Tacexpr.TacDo (n,t) ->
<:expr< Tacexpr.TacDo $mlexpr_of_or_var mlexpr_of_int n$ $mlexpr_of_tactic t$ >>
| Tacexpr.TacRepeat t ->
<:expr< Tacexpr.TacRepeat $mlexpr_of_tactic t$ >>
| Tacexpr.TacProgress t ->
<:expr< Tacexpr.TacProgress $mlexpr_of_tactic t$ >>
| Tacexpr.TacId l ->
<:expr< Tacexpr.TacId $mlexpr_of_list mlexpr_of_message_token l$ >>
| Tacexpr.TacFail (n,l) ->
<:expr< Tacexpr.TacFail $mlexpr_of_or_var mlexpr_of_int n$ $mlexpr_of_list mlexpr_of_message_token l$ >>
(*
| Tacexpr.TacInfo t -> TacInfo (loc,f t)
| Tacexpr.TacRec (id,(idl,t)) -> TacRec (loc,(id,(idl,f t)))
| Tacexpr.TacRecIn (l,t) -> TacRecIn(loc,List.map (fun (id,t) -> (id,f t)) l,f t)
*)
| Tacexpr.TacLetIn (isrec,l,t) ->
let f =
mlexpr_of_pair
(mlexpr_of_pair (fun _ -> dloc) mlexpr_of_ident)
mlexpr_of_tactic_arg in
<:expr< Tacexpr.TacLetIn $mlexpr_of_bool isrec$ $mlexpr_of_list f l$ $mlexpr_of_tactic t$ >>
| Tacexpr.TacMatch (lz,t,l) ->
<:expr< Tacexpr.TacMatch
$mlexpr_of_bool lz$
$mlexpr_of_tactic t$
$mlexpr_of_list (mlexpr_of_match_rule mlexpr_of_tactic) l$>>
| Tacexpr.TacMatchGoal (lz,lr,l) ->
<:expr< Tacexpr.TacMatchGoal
$mlexpr_of_bool lz$
$mlexpr_of_bool lr$
$mlexpr_of_list (mlexpr_of_match_rule mlexpr_of_tactic) l$>>
| Tacexpr.TacFun (idol,body) ->
<:expr< Tacexpr.TacFun
($mlexpr_of_list mlexpr_of_ident_option idol$,
$mlexpr_of_tactic body$) >>
| Tacexpr.TacArg (Tacexpr.MetaIdArg (_,true,id)) -> anti loc id
| Tacexpr.TacArg t ->
<:expr< Tacexpr.TacArg $mlexpr_of_tactic_arg t$ >>
| _ -> failwith "Quotation of tactic expressions: TODO"
and mlexpr_of_tactic_arg = function
| Tacexpr.MetaIdArg (loc,true,id) -> anti loc id
| Tacexpr.MetaIdArg (loc,false,id) ->
<:expr< Tacexpr.ConstrMayEval (Rawterm.ConstrTerm $anti loc id$) >>
| Tacexpr.TacCall (loc,t,tl) ->
<:expr< Tacexpr.TacCall $dloc$ $mlexpr_of_reference t$ $mlexpr_of_list mlexpr_of_tactic_arg tl$>>
| Tacexpr.Tacexp t ->
<:expr< Tacexpr.Tacexp $mlexpr_of_tactic t$ >>
| Tacexpr.ConstrMayEval c ->
<:expr< Tacexpr.ConstrMayEval $mlexpr_of_may_eval mlexpr_of_constr c$ >>
| Tacexpr.Reference r ->
<:expr< Tacexpr.Reference $mlexpr_of_reference r$ >>
| _ -> failwith "mlexpr_of_tactic_arg: TODO"
let fconstr e =
let ee s =
mlexpr_of_constr (Pcoq.Gram.Entry.parse e
(Pcoq.Gram.parsable (Stream.of_string s)))
in
let ep s = patt_of_expr (ee s) in
Quotation.ExAst (ee, ep)
let ftac e =
let ee s =
mlexpr_of_tactic (Pcoq.Gram.Entry.parse e
(Pcoq.Gram.parsable (Stream.of_string s)))
in
let ep s = patt_of_expr (ee s) in
Quotation.ExAst (ee, ep)
let _ =
Quotation.add "constr" (fconstr Pcoq.Constr.constr_eoi);
Quotation.add "tactic" (ftac Pcoq.Tactic.tactic_eoi);
Quotation.default := "constr"
|