1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Changed by (and thus parts copyright ©) by Lionel Elie Mamane <lionel@mamane.lu>
* on May-June 2006 for implementation of abstraction of pretty-printing of objects.
*)
open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Declarations
open Inductive
open Inductiveops
open Sign
open Reduction
open Environ
open Declare
open Impargs
open Libobject
open Printer
open Printmod
open Libnames
open Nametab
open Recordops
type object_pr = {
print_inductive : mutual_inductive -> std_ppcmds;
print_constant_with_infos : constant -> std_ppcmds;
print_section_variable : variable -> std_ppcmds;
print_syntactic_def : kernel_name -> std_ppcmds;
print_module : bool -> Names.module_path -> std_ppcmds;
print_modtype : module_path -> std_ppcmds;
print_named_decl : identifier * constr option * types -> std_ppcmds;
print_library_entry : bool -> (object_name * Lib.node) -> std_ppcmds option;
print_context : bool -> int option -> Lib.library_segment -> std_ppcmds;
print_typed_value_in_env : Environ.env -> Term.constr * Term.types -> Pp.std_ppcmds;
print_eval : Reductionops.reduction_function -> env -> Evd.evar_map -> Topconstr.constr_expr -> unsafe_judgment -> std_ppcmds;
}
let gallina_print_module = print_module
let gallina_print_modtype = print_modtype
(**************)
(** Utilities *)
let print_closed_sections = ref false
let pr_infos_list l = v 0 (prlist_with_sep cut (fun x -> x) l) ++ fnl()
let with_line_skip l = if l = [] then mt() else fnl() ++ pr_infos_list l
let blankline = mt() (* add a blank sentence in the list of infos *)
let add_colon prefix = if ismt prefix then mt () else prefix ++ str ": "
let int_or_no n = if n=0 then str "no" else int n
(*******************)
(** Basic printing *)
let print_basename sp = pr_global (ConstRef sp)
let print_ref reduce ref =
let typ = Global.type_of_global ref in
let typ =
if reduce then
let ctx,ccl = Reductionops.splay_prod_assum (Global.env()) Evd.empty typ
in it_mkProd_or_LetIn ccl ctx
else typ in
hov 0 (pr_global ref ++ str " :" ++ spc () ++ pr_ltype typ)
(********************************)
(** Printing implicit arguments *)
let conjugate_verb_to_be = function [_] -> "is" | _ -> "are"
let pr_impl_name imp = pr_id (name_of_implicit imp)
let print_impargs_by_name max = function
| [] -> []
| impls ->
[hov 0 (str (plural (List.length impls) "Argument") ++ spc() ++
prlist_with_sep pr_comma pr_impl_name impls ++ spc() ++
str (conjugate_verb_to_be impls) ++ str" implicit" ++
(if max then strbrk " and maximally inserted" else mt()))]
let print_one_impargs_list l =
let imps = List.filter is_status_implicit l in
let maximps = List.filter Impargs.maximal_insertion_of imps in
let nonmaximps = list_subtract imps maximps in
print_impargs_by_name false nonmaximps @
print_impargs_by_name true maximps
let print_impargs_list prefix l =
let l = extract_impargs_data l in
List.flatten (List.map (fun (cond,imps) ->
match cond with
| None ->
List.map (fun pp -> add_colon prefix ++ pp)
(print_one_impargs_list imps)
| Some (n1,n2) ->
[v 2 (prlist_with_sep cut (fun x -> x)
[(if ismt prefix then str "When" else prefix ++ str ", when") ++
str " applied to " ++
(if n1 = n2 then int_or_no n2 else
if n1 = 0 then str "less than " ++ int n2
else int n1 ++ str " to " ++ int_or_no n2) ++
str (plural n2 " argument") ++ str ":";
v 0 (prlist_with_sep cut (fun x -> x)
(if List.exists is_status_implicit imps
then print_one_impargs_list imps
else [str "No implicit arguments"]))])]) l)
let print_renames_list prefix l =
if l = [] then [] else
[add_colon prefix ++ str "Arguments are renamed to " ++
hv 2 (prlist_with_sep pr_comma (fun x -> x) (List.map pr_name l))]
let need_expansion impl ref =
let typ = Global.type_of_global ref in
let ctx = (prod_assum typ) in
let nprods = List.length (List.filter (fun (_,b,_) -> b=None) ctx) in
impl <> [] & List.length impl >= nprods &
let _,lastimpl = list_chop nprods impl in
List.filter is_status_implicit lastimpl <> []
let print_impargs ref =
let ref = Smartlocate.smart_global ref in
let impl = implicits_of_global ref in
let has_impl = impl <> [] in
(* Need to reduce since implicits are computed with products flattened *)
pr_infos_list
([ print_ref (need_expansion (select_impargs_size 0 impl) ref) ref;
blankline ] @
(if has_impl then print_impargs_list (mt()) impl
else [str "No implicit arguments"]))
(*********************)
(** Printing Scopes *)
let print_argument_scopes prefix = function
| [Some sc] ->
[add_colon prefix ++ str"Argument scope is [" ++ str sc ++ str"]"]
| l when not (List.for_all ((=) None) l) ->
[add_colon prefix ++ hov 2 (str"Argument scopes are" ++ spc() ++
str "[" ++
prlist_with_sep spc (function Some sc -> str sc | None -> str "_") l ++
str "]")]
| _ -> []
(*****************************)
(** Printing simpl behaviour *)
let print_simpl_behaviour ref =
match Tacred.get_simpl_behaviour ref with
| None -> []
| Some (recargs, nargs, flags) ->
let never = List.mem `SimplNeverUnfold flags in
let nomatch = List.mem `SimplDontExposeCase flags in
let pp_nomatch = spc() ++ if nomatch then
str "avoiding to expose match constructs" else str"" in
let pp_recargs = spc() ++ str "when the " ++
let rec aux = function
| [] -> mt()
| [x] -> str (ordinal (x+1))
| [x;y] -> str (ordinal (x+1)) ++ str " and " ++ str (ordinal (y+1))
| x::tl -> str (ordinal (x+1)) ++ str ", " ++ aux tl in
aux recargs ++ str (plural (List.length recargs) " argument") ++
str (plural (if List.length recargs >= 2 then 1 else 2) " evaluate") ++
str " to a constructor" in
let pp_nargs =
spc() ++ str "when applied to " ++ int nargs ++
str (plural nargs " argument") in
[hov 2 (str "The simpl tactic " ++
match recargs, nargs, never with
| _,_, true -> str "never unfolds " ++ pr_global ref
| [], 0, _ -> str "always unfolds " ++ pr_global ref
| _::_, n, _ when n < 0 ->
str "unfolds " ++ pr_global ref ++ pp_recargs ++ pp_nomatch
| _::_, n, _ when n > List.fold_left max 0 recargs ->
str "unfolds " ++ pr_global ref ++ pp_recargs ++
str " and" ++ pp_nargs ++ pp_nomatch
| _::_, _, _ ->
str "unfolds " ++ pr_global ref ++ pp_recargs ++ pp_nomatch
| [], n, _ when n > 0 ->
str "unfolds " ++ pr_global ref ++ pp_nargs ++ pp_nomatch
| _ -> str "unfolds " ++ pr_global ref ++ pp_nomatch )]
;;
(*********************)
(** Printing Opacity *)
type opacity =
| FullyOpaque
| TransparentMaybeOpacified of Conv_oracle.level
let opacity env = function
| VarRef v when pi2 (Environ.lookup_named v env) <> None ->
Some(TransparentMaybeOpacified (Conv_oracle.get_strategy(VarKey v)))
| ConstRef cst ->
let cb = Environ.lookup_constant cst env in
(match cb.const_body with
| Undef _ -> None
| OpaqueDef _ -> Some FullyOpaque
| Def _ -> Some
(TransparentMaybeOpacified (Conv_oracle.get_strategy(ConstKey cst))))
| _ -> None
let print_opacity ref =
match opacity (Global.env()) ref with
| None -> []
| Some s ->
[pr_global ref ++ str " is " ++
str (match s with
| FullyOpaque -> "opaque"
| TransparentMaybeOpacified Conv_oracle.Opaque ->
"basically transparent but considered opaque for reduction"
| TransparentMaybeOpacified lev when lev = Conv_oracle.transparent ->
"transparent"
| TransparentMaybeOpacified (Conv_oracle.Level n) ->
"transparent (with expansion weight "^string_of_int n^")"
| TransparentMaybeOpacified Conv_oracle.Expand ->
"transparent (with minimal expansion weight)")]
(*******************)
(* *)
let print_name_infos ref =
let impls = implicits_of_global ref in
let scopes = Notation.find_arguments_scope ref in
let renames =
try List.hd (Arguments_renaming.arguments_names ref) with Not_found -> [] in
let type_info_for_implicit =
if need_expansion (select_impargs_size 0 impls) ref then
(* Need to reduce since implicits are computed with products flattened *)
[str "Expanded type for implicit arguments";
print_ref true ref; blankline]
else
[] in
type_info_for_implicit @
print_renames_list (mt()) renames @
print_impargs_list (mt()) impls @
print_argument_scopes (mt()) scopes
let print_id_args_data test pr id l =
if List.exists test l then
pr (str "For " ++ pr_id id) l
else
[]
let print_args_data_of_inductive_ids get test pr sp mipv =
List.flatten (Array.to_list (Array.mapi
(fun i mip ->
print_id_args_data test pr mip.mind_typename (get (IndRef (sp,i))) @
List.flatten (Array.to_list (Array.mapi
(fun j idc ->
print_id_args_data test pr idc (get (ConstructRef ((sp,i),j+1))))
mip.mind_consnames)))
mipv))
let print_inductive_implicit_args =
print_args_data_of_inductive_ids
implicits_of_global (fun l -> positions_of_implicits l <> [])
print_impargs_list
let print_inductive_renames =
print_args_data_of_inductive_ids
(fun r -> try List.hd (Arguments_renaming.arguments_names r) with _ -> [])
((<>) Anonymous)
print_renames_list
let print_inductive_argument_scopes =
print_args_data_of_inductive_ids
Notation.find_arguments_scope ((<>) None) print_argument_scopes
(*********************)
(* "Locate" commands *)
type logical_name =
| Term of global_reference
| Dir of global_dir_reference
| Syntactic of kernel_name
| ModuleType of qualid * module_path
| Undefined of qualid
let locate_any_name ref =
let module N = Nametab in
let (loc,qid) = qualid_of_reference ref in
try Term (N.locate qid)
with Not_found ->
try Syntactic (N.locate_syndef qid)
with Not_found ->
try Dir (N.locate_dir qid)
with Not_found ->
try ModuleType (qid, N.locate_modtype qid)
with Not_found -> Undefined qid
let pr_located_qualid = function
| Term ref ->
let ref_str = match ref with
ConstRef _ -> "Constant"
| IndRef _ -> "Inductive"
| ConstructRef _ -> "Constructor"
| VarRef _ -> "Variable" in
str ref_str ++ spc () ++ pr_path (Nametab.path_of_global ref)
| Syntactic kn ->
str "Notation" ++ spc () ++ pr_path (Nametab.path_of_syndef kn)
| Dir dir ->
let s,dir = match dir with
| DirOpenModule (dir,_) -> "Open Module", dir
| DirOpenModtype (dir,_) -> "Open Module Type", dir
| DirOpenSection (dir,_) -> "Open Section", dir
| DirModule (dir,_) -> "Module", dir
| DirClosedSection dir -> "Closed Section", dir
in
str s ++ spc () ++ pr_dirpath dir
| ModuleType (qid,_) ->
str "Module Type" ++ spc () ++ pr_path (Nametab.full_name_modtype qid)
| Undefined qid ->
pr_qualid qid ++ spc () ++ str "not a defined object."
let print_located_qualid ref =
let (loc,qid) = qualid_of_reference ref in
let module N = Nametab in
let expand = function
| TrueGlobal ref ->
Term ref, N.shortest_qualid_of_global Idset.empty ref
| SynDef kn ->
Syntactic kn, N.shortest_qualid_of_syndef Idset.empty kn in
match List.map expand (N.locate_extended_all qid) with
| [] ->
let (dir,id) = repr_qualid qid in
if dir = empty_dirpath then
str "No object of basename " ++ pr_id id
else
str "No object of suffix " ++ pr_qualid qid
| l ->
prlist_with_sep fnl
(fun (o,oqid) ->
hov 2 (pr_located_qualid o ++
(if oqid <> qid then
spc() ++ str "(shorter name to refer to it in current context is " ++ pr_qualid oqid ++ str")"
else
mt ()))) l
(******************************************)
(**** Printing declarations and judgments *)
(**** Gallina layer *****)
let gallina_print_typed_value_in_env env (trm,typ) =
(pr_lconstr_env env trm ++ fnl () ++
str " : " ++ pr_ltype_env env typ ++ fnl ())
(* To be improved; the type should be used to provide the types in the
abstractions. This should be done recursively inside pr_lconstr, so that
the pretty-print of a proposition (P:(nat->nat)->Prop)(P [u]u)
synthesizes the type nat of the abstraction on u *)
let print_named_def name body typ =
let pbody = pr_lconstr body in
let ptyp = pr_ltype typ in
let pbody = if isCast body then surround pbody else pbody in
(str "*** [" ++ str name ++ str " " ++
hov 0 (str ":=" ++ brk (1,2) ++ pbody ++ spc () ++
str ":" ++ brk (1,2) ++ ptyp) ++
str "]")
let print_named_assum name typ =
str "*** [" ++ str name ++ str " : " ++ pr_ltype typ ++ str "]"
let gallina_print_named_decl (id,c,typ) =
let s = string_of_id id in
match c with
| Some body -> print_named_def s body typ
| None -> print_named_assum s typ
let assumptions_for_print lna =
List.fold_right (fun na env -> add_name na env) lna empty_names_context
(*********************)
(* *)
let gallina_print_inductive sp =
let env = Global.env() in
let mib = Environ.lookup_mind sp env in
let mipv = mib.mind_packets in
pr_mutual_inductive_body env sp mib ++ fnl () ++
with_line_skip
(print_inductive_renames sp mipv @
print_inductive_implicit_args sp mipv @
print_inductive_argument_scopes sp mipv)
let print_named_decl id =
gallina_print_named_decl (Global.lookup_named id) ++ fnl ()
let gallina_print_section_variable id =
print_named_decl id ++
with_line_skip (print_name_infos (VarRef id))
let print_body = function
| Some lc -> pr_lconstr (Declarations.force lc)
| None -> (str"<no body>")
let print_typed_body (val_0,typ) =
(print_body val_0 ++ fnl () ++ str " : " ++ pr_ltype typ)
let ungeneralized_type_of_constant_type = function
| PolymorphicArity (ctx,a) -> mkArity (ctx, Type a.poly_level)
| NonPolymorphicType t -> t
let print_constant with_values sep sp =
let cb = Global.lookup_constant sp in
let val_0 = body_of_constant cb in
let typ = ungeneralized_type_of_constant_type cb.const_type in
hov 0 (
match val_0 with
| None ->
str"*** [ " ++
print_basename sp ++ str " : " ++ cut () ++ pr_ltype typ ++
str" ]"
| _ ->
print_basename sp ++ str sep ++ cut () ++
(if with_values then print_typed_body (val_0,typ) else pr_ltype typ))
++ fnl ()
let gallina_print_constant_with_infos sp =
print_constant true " = " sp ++
with_line_skip (print_name_infos (ConstRef sp))
let gallina_print_syntactic_def kn =
let qid = Nametab.shortest_qualid_of_syndef Idset.empty kn
and (vars,a) = Syntax_def.search_syntactic_definition kn in
let c = Topconstr.glob_constr_of_aconstr dummy_loc a in
hov 2
(hov 4
(str "Notation " ++ pr_qualid qid ++
prlist (fun id -> spc () ++ pr_id id) (List.map fst vars) ++
spc () ++ str ":=") ++
spc () ++ Constrextern.without_symbols pr_glob_constr c) ++ fnl ()
let gallina_print_leaf_entry with_values ((sp,kn as oname),lobj) =
let sep = if with_values then " = " else " : "
and tag = object_tag lobj in
match (oname,tag) with
| (_,"VARIABLE") ->
(* Outside sections, VARIABLES still exist but only with universes
constraints *)
(try Some(print_named_decl (basename sp)) with Not_found -> None)
| (_,"CONSTANT") ->
Some (print_constant with_values sep (constant_of_kn kn))
| (_,"INDUCTIVE") ->
Some (gallina_print_inductive (mind_of_kn kn))
| (_,"MODULE") ->
let (mp,_,l) = repr_kn kn in
Some (print_module with_values (MPdot (mp,l)))
| (_,"MODULE TYPE") ->
let (mp,_,l) = repr_kn kn in
Some (print_modtype (MPdot (mp,l)))
| (_,("AUTOHINT"|"GRAMMAR"|"SYNTAXCONSTANT"|"PPSYNTAX"|"TOKEN"|"CLASS"|
"COERCION"|"REQUIRE"|"END-SECTION"|"STRUCTURE")) -> None
(* To deal with forgotten cases... *)
| (_,s) -> None
let gallina_print_library_entry with_values ent =
let pr_name (sp,_) = pr_id (basename sp) in
match ent with
| (oname,Lib.Leaf lobj) ->
gallina_print_leaf_entry with_values (oname,lobj)
| (oname,Lib.OpenedSection (dir,_)) ->
Some (str " >>>>>>> Section " ++ pr_name oname)
| (oname,Lib.ClosedSection _) ->
Some (str " >>>>>>> Closed Section " ++ pr_name oname)
| (_,Lib.CompilingLibrary (dir,_)) ->
Some (str " >>>>>>> Library " ++ pr_dirpath dir)
| (oname,Lib.OpenedModule _) ->
Some (str " >>>>>>> Module " ++ pr_name oname)
| (oname,Lib.ClosedModule _) ->
Some (str " >>>>>>> Closed Module " ++ pr_name oname)
| (_,Lib.FrozenState _) ->
None
let gallina_print_context with_values =
let rec prec n = function
| h::rest when n = None or Option.get n > 0 ->
(match gallina_print_library_entry with_values h with
| None -> prec n rest
| Some pp -> prec (Option.map ((+) (-1)) n) rest ++ pp ++ fnl ())
| _ -> mt ()
in
prec
let gallina_print_eval red_fun env evmap _ {uj_val=trm;uj_type=typ} =
let ntrm = red_fun env evmap trm in
(str " = " ++ gallina_print_typed_value_in_env env (ntrm,typ))
(******************************************)
(**** Printing abstraction layer *)
let default_object_pr = {
print_inductive = gallina_print_inductive;
print_constant_with_infos = gallina_print_constant_with_infos;
print_section_variable = gallina_print_section_variable;
print_syntactic_def = gallina_print_syntactic_def;
print_module = gallina_print_module;
print_modtype = gallina_print_modtype;
print_named_decl = gallina_print_named_decl;
print_library_entry = gallina_print_library_entry;
print_context = gallina_print_context;
print_typed_value_in_env = gallina_print_typed_value_in_env;
print_eval = gallina_print_eval;
}
let object_pr = ref default_object_pr
let set_object_pr = (:=) object_pr
let print_inductive x = !object_pr.print_inductive x
let print_constant_with_infos c = !object_pr.print_constant_with_infos c
let print_section_variable c = !object_pr.print_section_variable c
let print_syntactic_def x = !object_pr.print_syntactic_def x
let print_module x = !object_pr.print_module x
let print_modtype x = !object_pr.print_modtype x
let print_named_decl x = !object_pr.print_named_decl x
let print_library_entry x = !object_pr.print_library_entry x
let print_context x = !object_pr.print_context x
let print_typed_value_in_env x = !object_pr.print_typed_value_in_env x
let print_eval x = !object_pr.print_eval x
(******************************************)
(**** Printing declarations and judgments *)
(**** Abstract layer *****)
let print_typed_value x = print_typed_value_in_env (Global.env ()) x
let print_judgment env {uj_val=trm;uj_type=typ} =
print_typed_value_in_env env (trm, typ)
let print_safe_judgment env j =
let trm = Safe_typing.j_val j in
let typ = Safe_typing.j_type j in
print_typed_value_in_env env (trm, typ)
(*********************)
(* *)
let print_full_context () =
print_context true None (Lib.contents_after None)
let print_full_context_typ () =
print_context false None (Lib.contents_after None)
let print_full_pure_context () =
let rec prec = function
| ((_,kn),Lib.Leaf lobj)::rest ->
let pp = match object_tag lobj with
| "CONSTANT" ->
let con = Global.constant_of_delta_kn kn in
let cb = Global.lookup_constant con in
let typ = ungeneralized_type_of_constant_type cb.const_type in
hov 0 (
match cb.const_body with
| Undef _ ->
str "Parameter " ++
print_basename con ++ str " : " ++ cut () ++ pr_ltype typ
| OpaqueDef lc ->
str "Theorem " ++ print_basename con ++ cut () ++
str " : " ++ pr_ltype typ ++ str "." ++ fnl () ++
str "Proof " ++ pr_lconstr (Declarations.force_opaque lc)
| Def c ->
str "Definition " ++ print_basename con ++ cut () ++
str " : " ++ pr_ltype typ ++ cut () ++ str " := " ++
pr_lconstr (Declarations.force c))
++ str "." ++ fnl () ++ fnl ()
| "INDUCTIVE" ->
let mind = Global.mind_of_delta_kn kn in
let mib = Global.lookup_mind mind in
pr_mutual_inductive_body (Global.env()) mind mib ++
str "." ++ fnl () ++ fnl ()
| "MODULE" ->
(* TODO: make it reparsable *)
let (mp,_,l) = repr_kn kn in
print_module true (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl ()
| "MODULE TYPE" ->
(* TODO: make it reparsable *)
(* TODO: make it reparsable *)
let (mp,_,l) = repr_kn kn in
print_modtype (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl ()
| _ -> mt () in
prec rest ++ pp
| _::rest -> prec rest
| _ -> mt () in
prec (Lib.contents_after None)
(* For printing an inductive definition with
its constructors and elimination,
assume that the declaration of constructors and eliminations
follows the definition of the inductive type *)
(* This is designed to print the contents of an opened section *)
let read_sec_context r =
let loc,qid = qualid_of_reference r in
let dir =
try Nametab.locate_section qid
with Not_found ->
user_err_loc (loc,"read_sec_context", str "Unknown section.") in
let rec get_cxt in_cxt = function
| (_,Lib.OpenedSection ((dir',_),_) as hd)::rest ->
if dir = dir' then (hd::in_cxt) else get_cxt (hd::in_cxt) rest
| (_,Lib.ClosedSection _)::rest ->
error "Cannot print the contents of a closed section."
(* LEM: Actually, we could if we wanted to. *)
| [] -> []
| hd::rest -> get_cxt (hd::in_cxt) rest
in
let cxt = (Lib.contents_after None) in
List.rev (get_cxt [] cxt)
let print_sec_context sec =
print_context true None (read_sec_context sec)
let print_sec_context_typ sec =
print_context false None (read_sec_context sec)
let print_any_name = function
| Term (ConstRef sp) -> print_constant_with_infos sp
| Term (IndRef (sp,_)) -> print_inductive sp
| Term (ConstructRef ((sp,_),_)) -> print_inductive sp
| Term (VarRef sp) -> print_section_variable sp
| Syntactic kn -> print_syntactic_def kn
| Dir (DirModule(dirpath,(mp,_))) -> print_module (printable_body dirpath) mp
| Dir _ -> mt ()
| ModuleType (_,kn) -> print_modtype kn
| Undefined qid ->
try (* Var locale de but, pas var de section... donc pas d'implicits *)
let dir,str = repr_qualid qid in
if (repr_dirpath dir) <> [] then raise Not_found;
let (_,c,typ) = Global.lookup_named str in
(print_named_decl (str,c,typ))
with Not_found ->
errorlabstrm
"print_name" (pr_qualid qid ++ spc () ++ str "not a defined object.")
let print_name = function
| Genarg.ByNotation (loc,ntn,sc) ->
print_any_name
(Term (Notation.interp_notation_as_global_reference loc (fun _ -> true)
ntn sc))
| Genarg.AN ref ->
print_any_name (locate_any_name ref)
let print_opaque_name qid =
let env = Global.env () in
match global qid with
| ConstRef cst ->
let cb = Global.lookup_constant cst in
if constant_has_body cb then
print_constant_with_infos cst
else
error "Not a defined constant."
| IndRef (sp,_) ->
print_inductive sp
| ConstructRef cstr ->
let ty = Inductiveops.type_of_constructor env cstr in
print_typed_value (mkConstruct cstr, ty)
| VarRef id ->
let (_,c,ty) = lookup_named id env in
print_named_decl (id,c,ty)
let print_about_any loc k =
match k with
| Term ref ->
Dumpglob.add_glob loc ref;
pr_infos_list
(print_ref false ref :: blankline ::
print_name_infos ref @
print_simpl_behaviour ref @
print_opacity ref @
[hov 0 (str "Expands to: " ++ pr_located_qualid k)])
| Syntactic kn ->
let () = match Syntax_def.search_syntactic_definition kn with
| [],Topconstr.ARef ref -> Dumpglob.add_glob loc ref
| _ -> () in
v 0 (
print_syntactic_def kn ++
hov 0 (str "Expands to: " ++ pr_located_qualid k)) ++ fnl()
| Dir _ | ModuleType _ | Undefined _ ->
hov 0 (pr_located_qualid k) ++ fnl()
let print_about = function
| Genarg.ByNotation (loc,ntn,sc) ->
print_about_any loc
(Term (Notation.interp_notation_as_global_reference loc (fun _ -> true)
ntn sc))
| Genarg.AN ref ->
print_about_any (loc_of_reference ref) (locate_any_name ref)
(* for debug *)
let inspect depth =
print_context false (Some depth) (Lib.contents_after None)
(*************************************************************************)
(* Pretty-printing functions coming from classops.ml *)
open Classops
let print_coercion_value v = pr_lconstr (get_coercion_value v)
let print_class i =
let cl,_ = class_info_from_index i in
pr_class cl
let print_path ((i,j),p) =
hov 2 (
str"[" ++ hov 0 (prlist_with_sep pr_semicolon print_coercion_value p) ++
str"] : ") ++
print_class i ++ str" >-> " ++ print_class j
let _ = Classops.install_path_printer print_path
let print_graph () =
prlist_with_sep pr_fnl print_path (inheritance_graph())
let print_classes () =
prlist_with_sep pr_spc pr_class (classes())
let print_coercions () =
prlist_with_sep pr_spc print_coercion_value (coercions())
let index_of_class cl =
try
fst (class_info cl)
with _ ->
errorlabstrm "index_of_class"
(pr_class cl ++ spc() ++ str "not a defined class.")
let print_path_between cls clt =
let i = index_of_class cls in
let j = index_of_class clt in
let p =
try
lookup_path_between_class (i,j)
with _ ->
errorlabstrm "index_cl_of_id"
(str"No path between " ++ pr_class cls ++ str" and " ++ pr_class clt
++ str ".")
in
print_path ((i,j),p)
let print_canonical_projections () =
prlist_with_sep pr_fnl
(fun ((r1,r2),o) -> pr_cs_pattern r2 ++
str " <- " ++
pr_global r1 ++ str " ( " ++ pr_lconstr o.o_DEF ++ str " )")
(canonical_projections ())
(*************************************************************************)
(*************************************************************************)
(* Pretty-printing functions for type classes *)
open Typeclasses
let pr_typeclass env t =
print_ref false t.cl_impl ++ fnl ()
let print_typeclasses () =
let env = Global.env () in
prlist_with_sep fnl (pr_typeclass env) (typeclasses ())
let pr_instance env i =
(* gallina_print_constant_with_infos i.is_impl *)
(* lighter *)
print_ref false (instance_impl i) ++ fnl ()
let print_all_instances () =
let env = Global.env () in
let inst = all_instances () in
prlist_with_sep fnl (pr_instance env) inst
let print_instances r =
let env = Global.env () in
let inst = instances r in
prlist_with_sep fnl (pr_instance env) inst
|