summaryrefslogtreecommitdiff
path: root/parsing/g_intsyntax.ml
blob: a589ccf17e036ab6e60b7d55c610e47afd6d6440 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: g_intsyntax.ml 11309 2008-08-06 10:30:35Z herbelin $ i*)

(* digit-based syntax for int31, bigN bigZ and bigQ *)

open Bigint
open Libnames
open Rawterm

(*** Constants for locating the int31 and bigN ***)



let make_dir l = Names.make_dirpath (List.map Names.id_of_string (List.rev l))
let make_path dir id = Libnames.make_path (make_dir dir) (Names.id_of_string id)

(* copied on g_zsyntax.ml, where it is said to be a temporary hack*)
(* takes a path an identifier in the form of a string list and a string, 
   returns a kernel_name *)
let make_kn dir id = Libnames.encode_kn (make_dir dir) (Names.id_of_string id)


(* int31 stuff *)
let int31_module = ["Coq"; "Numbers"; "Cyclic"; "Int31"; "Int31"]
let int31_path = make_path int31_module "int31"
let int31_id = make_kn int31_module
let int31_scope = "int31_scope"

let int31_construct = ConstructRef ((int31_id "int31",0),1)

let int31_0 = ConstructRef ((int31_id "digits",0),1)
let int31_1 = ConstructRef ((int31_id "digits",0),2)


(* bigN stuff*)
let zn2z_module = ["Coq"; "Numbers"; "Cyclic"; "DoubleCyclic"; "DoubleType"]
let zn2z_path = make_path zn2z_module "zn2z"
let zn2z_id = make_kn zn2z_module

let zn2z_W0 = ConstructRef ((zn2z_id "zn2z",0),1)
let zn2z_WW = ConstructRef ((zn2z_id "zn2z",0),2)

let bigN_module = ["Coq"; "Numbers"; "Natural"; "BigN"; "BigN" ]
let bigN_path = make_path (bigN_module@["BigN"]) "t"
(* big ugly hack *)
let bigN_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigN_module)), 
                             Names.mk_label "BigN")),
              [], Names.id_of_string id) : Names.kernel_name)
let bigN_scope = "bigN_scope"

(* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *)
let n_inlined = of_string "7"
let bigN_constructor =
 (* converts a bigint into an int the ugly way *)
  let rec to_int i =
    if equal i zero then
      0
    else
      let (quo,rem) = div2_with_rest i in
      if rem then
	2*(to_int quo)+1
      else
	2*(to_int quo)
  in
  fun i -> 
  ConstructRef ((bigN_id "t_",0),
		if less_than i n_inlined then
		  (to_int i)+1
		else
		  (to_int n_inlined)+1
	       )

(*bigZ stuff*)
let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ]
let bigZ_path = make_path (bigZ_module@["BigZ"]) "t"
(* big ugly hack bis *)
let bigZ_id id = (Obj.magic ((Names.MPdot ((Names.MPfile (make_dir bigZ_module)), 
                             Names.mk_label "BigZ")),
              [], Names.id_of_string id) : Names.kernel_name)
let bigZ_scope = "bigZ_scope"

let bigZ_pos = ConstructRef ((bigZ_id "t_",0),1)
let bigZ_neg = ConstructRef ((bigZ_id "t_",0),2)


(*bigQ stuff*)
let bigQ_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "BigQ"]
let qmake_module = ["Coq"; "Numbers"; "Rational"; "BigQ"; "QMake_base"]
let bigQ_path = make_path (bigQ_module@["BigQ"]) "t"
(* big ugly hack bis *)
let bigQ_id = make_kn qmake_module
let bigQ_scope = "bigQ_scope"

let bigQ_z =  ConstructRef ((bigQ_id "q_type",0),1)


(*** Definition of the Non_closed exception, used in the pretty printing ***)
exception Non_closed

(*** Parsing for int31 in digital notation ***)

(* parses a *non-negative* integer (from bigint.ml) into an int31
   wraps modulo 2^31 *)
let int31_of_pos_bigint dloc n = 
  let ref_construct = RRef (dloc, int31_construct) in
  let ref_0 = RRef (dloc, int31_0) in
  let ref_1 = RRef (dloc, int31_1) in
  let rec args counter n =
    if counter <= 0 then
      []
    else
      let (q,r) = div2_with_rest n in
	(if r then ref_1 else ref_0)::(args (counter-1) q)
  in
  RApp (dloc, ref_construct, List.rev (args 31 n))

let error_negative dloc =
  Util.user_err_loc (dloc, "interp_int31", Pp.str "int31 are only non-negative numbers.")

let interp_int31 dloc n = 
  if is_pos_or_zero n then
    int31_of_pos_bigint dloc n
  else
    error_negative dloc

(* Pretty prints an int31 *)

let bigint_of_int31 = 
  let rec args_parsing args cur = 
    match args with 
      | [] -> cur
      | (RRef (_,b))::l when b = int31_0 -> args_parsing l (mult_2 cur)
      | (RRef (_,b))::l when b = int31_1 -> args_parsing l (add_1 (mult_2 cur))
      | _ -> raise Non_closed
  in
  function 
  | RApp (_, RRef (_, c), args) when c=int31_construct -> args_parsing args zero
  | _ -> raise Non_closed

let uninterp_int31 i = 
  try 
    Some (bigint_of_int31 i)
  with Non_closed ->
    None

(* Actually declares the interpreter for int31 *)
let _ = Notation.declare_numeral_interpreter int31_scope
  (int31_path, int31_module)
  interp_int31
  ([RRef (Util.dummy_loc, int31_construct)],
   uninterp_int31,
   true)


(*** Parsing for bigN in digital notation ***)
(* the base for bigN (in Coq) that is 2^31 in our case *)
let base = pow two (of_string "31")

(* base of the bigN of height N : *)
let rank n = pow base (pow two n)

(* splits a number bi at height n, that is the rest needs 2^n int31 to be stored
   it is expected to be used only when the quotient would also need 2^n int31 to be
   stored *)
let split_at n bi = 
  euclid bi (rank (sub_1 n))

(* search the height of the Coq bigint needed to represent the integer bi *)
let height bi =
  let rec height_aux n = 
    if less_than bi (rank n) then
      n
    else
      height_aux (add_1 n)
  in
  height_aux zero


(* n must be a non-negative integer (from bigint.ml) *)
let word_of_pos_bigint dloc hght n =
  let ref_W0 = RRef (dloc, zn2z_W0) in
  let ref_WW = RRef (dloc, zn2z_WW) in
  let rec decomp hgt n =
    if is_neg_or_zero hgt then
      int31_of_pos_bigint dloc n
    else if equal n zero then
      RApp (dloc, ref_W0, [RHole (dloc, Evd.InternalHole)])
    else
      let (h,l) = split_at hgt n in
      RApp (dloc, ref_WW, [RHole (dloc, Evd.InternalHole);
			   decomp (sub_1 hgt) h;
			   decomp (sub_1 hgt) l])
  in
  decomp hght n
      
let bigN_of_pos_bigint dloc n =
  let ref_constructor i = RRef (dloc, bigN_constructor i) in
  let result h word = RApp (dloc, ref_constructor h, if less_than h n_inlined then
				                       [word]
			                             else
				                      [G_natsyntax.nat_of_int dloc (sub h n_inlined);
						       word])
  in
  let hght = height n in
  result hght (word_of_pos_bigint dloc hght n)
  
let bigN_error_negative dloc =
  Util.user_err_loc (dloc, "interp_bigN", Pp.str "bigN are only non-negative numbers.")

let interp_bigN dloc n = 
  if is_pos_or_zero n then
    bigN_of_pos_bigint dloc n
  else
    bigN_error_negative dloc


(* Pretty prints a bigN *)

let bigint_of_word = 
  let rec get_height rc =
    match rc with
    | RApp (_,RRef(_,c), [_;lft;rght]) when c = zn2z_WW -> 
	                                  let hleft = get_height lft in
					  let hright = get_height rght in
					  add_1 
					    (if less_than hleft hright then
						 hright
					     else
						 hleft)
    | _ -> zero
  in
  let rec transform hght rc =
    match rc with
    | RApp (_,RRef(_,c),_) when c = zn2z_W0-> zero
    | RApp (_,RRef(_,c), [_;lft;rght]) when c=zn2z_WW-> let new_hght = sub_1 hght in
	                                                add (mult (rank new_hght)
                                                          (transform (new_hght) lft))
	                                            (transform (new_hght) rght)
    | _ -> bigint_of_int31 rc
  in
  fun rc ->
    let hght = get_height rc in
    transform hght rc
    
let bigint_of_bigN rc =
  match rc with
  | RApp (_,_,[one_arg]) -> bigint_of_word one_arg
  | RApp (_,_,[_;second_arg]) -> bigint_of_word second_arg
  | _ -> raise Non_closed

let uninterp_bigN rc = 
  try 
    Some (bigint_of_bigN rc)
  with Non_closed ->
    None


(* declare the list of constructors of bigN used in the declaration of the
   numeral interpreter *)

let bigN_list_of_constructors =
  let rec build i = 
    if less_than i (add_1 n_inlined) then
      RRef (Util.dummy_loc, bigN_constructor i)::(build (add_1 i))
    else
      []
  in
  build zero

(* Actually declares the interpreter for bigN *)
let _ = Notation.declare_numeral_interpreter bigN_scope
  (bigN_path, bigN_module)
  interp_bigN
  (bigN_list_of_constructors,
   uninterp_bigN,
   true)


(*** Parsing for bigZ in digital notation ***)
let interp_bigZ dloc n = 
  let ref_pos = RRef (dloc, bigZ_pos) in
  let ref_neg = RRef (dloc, bigZ_neg) in
  if is_pos_or_zero n then
    RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])
  else
    RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])

(* pretty printing functions for bigZ *)
let bigint_of_bigZ = function
  | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_pos -> bigint_of_bigN one_arg
  | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_neg -> 
      let opp_val = bigint_of_bigN one_arg in 
      if equal opp_val zero then
	raise Non_closed
      else
	neg opp_val
  | _ -> raise Non_closed


let uninterp_bigZ rc = 
  try 
    Some (bigint_of_bigZ rc)
  with Non_closed ->
    None

(* Actually declares the interpreter for bigN *)
let _ = Notation.declare_numeral_interpreter bigZ_scope
  (bigZ_path, bigZ_module)
  interp_bigZ
  ([RRef (Util.dummy_loc, bigZ_pos);
    RRef (Util.dummy_loc, bigZ_neg)],
   uninterp_bigZ,
   true)

(*** Parsing for bigQ in digital notation ***)
let interp_bigQ dloc n = 
  let ref_z = RRef (dloc, bigQ_z) in
  let ref_pos = RRef (dloc, bigZ_pos) in
  let ref_neg = RRef (dloc, bigZ_neg) in
  if is_pos_or_zero n then
    RApp (dloc, ref_z,
       [RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])])
  else
    RApp (dloc, ref_z,
       [RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])])

let uninterp_bigQ rc = None


(* Actually declares the interpreter for bigQ *)
let _ = Notation.declare_numeral_interpreter bigQ_scope
  (bigQ_path, bigQ_module)
  interp_bigQ
  ([], uninterp_bigQ,
   true)