1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Util
open Names
open Libnames
open Term
open Reduction
open Declarations
open Environ
open Inductive
open Libobject
open Lib
open Nametab
open Pp
open Topconstr
open Termops
open Namegen
(*s Flags governing the computation of implicit arguments *)
type implicits_flags = {
auto : bool; (* automatic or manual only *)
strict : bool; (* true = strict *)
strongly_strict : bool; (* true = strongly strict *)
reversible_pattern : bool;
contextual : bool; (* true = contextual *)
maximal : bool
}
let implicit_args = ref {
auto = false;
strict = true;
strongly_strict = false;
reversible_pattern = false;
contextual = false;
maximal = false;
}
let make_implicit_args flag =
implicit_args := { !implicit_args with auto = flag }
let make_strict_implicit_args flag =
implicit_args := { !implicit_args with strict = flag }
let make_strongly_strict_implicit_args flag =
implicit_args := { !implicit_args with strongly_strict = flag }
let make_reversible_pattern_implicit_args flag =
implicit_args := { !implicit_args with reversible_pattern = flag }
let make_contextual_implicit_args flag =
implicit_args := { !implicit_args with contextual = flag }
let make_maximal_implicit_args flag =
implicit_args := { !implicit_args with maximal = flag }
let is_implicit_args () = !implicit_args.auto
let is_strict_implicit_args () = !implicit_args.strict
let is_strongly_strict_implicit_args () = !implicit_args.strongly_strict
let is_reversible_pattern_implicit_args () = !implicit_args.reversible_pattern
let is_contextual_implicit_args () = !implicit_args.contextual
let is_maximal_implicit_args () = !implicit_args.maximal
let with_implicits flags f x =
let oflags = !implicit_args in
try
implicit_args := flags;
let rslt = f x in
implicit_args := oflags;
rslt
with e -> begin
implicit_args := oflags;
raise e
end
let set_maximality imps b =
(* Force maximal insertion on ending implicits (compatibility) *)
b || List.for_all ((<>) None) imps
(*s Computation of implicit arguments *)
(* We remember various information about why an argument is
inferable as implicit
- [DepRigid] means that the implicit argument can be found by
unification along a rigid path (we do not print the arguments of
this kind if there is enough arguments to infer them)
- [DepFlex] means that the implicit argument can be found by unification
along a collapsable path only (e.g. as x in (P x) where P is another
argument) (we do (defensively) print the arguments of this kind)
- [DepFlexAndRigid] means that the least argument from which the
implicit argument can be inferred is following a collapsable path
but there is a greater argument from where the implicit argument is
inferable following a rigid path (useful to know how to print a
partial application)
- [Manual] means the argument has been explicitely set as implicit.
We also consider arguments inferable from the conclusion but it is
operational only if [conclusion_matters] is true.
*)
type argument_position =
| Conclusion
| Hyp of int
type implicit_explanation =
| DepRigid of argument_position
| DepFlex of argument_position
| DepFlexAndRigid of (*flex*) argument_position * (*rig*) argument_position
| Manual
let argument_less = function
| Hyp n, Hyp n' -> n<n'
| Hyp _, Conclusion -> true
| Conclusion, _ -> false
let update pos rig (na,st) =
let e =
if rig then
match st with
| None -> DepRigid pos
| Some (DepRigid n as x) ->
if argument_less (pos,n) then DepRigid pos else x
| Some (DepFlexAndRigid (fpos,rpos) as x) ->
if argument_less (pos,fpos) or pos=fpos then DepRigid pos else
if argument_less (pos,rpos) then DepFlexAndRigid (fpos,pos) else x
| Some (DepFlex fpos) ->
if argument_less (pos,fpos) or pos=fpos then DepRigid pos
else DepFlexAndRigid (fpos,pos)
| Some Manual -> assert false
else
match st with
| None -> DepFlex pos
| Some (DepRigid rpos as x) ->
if argument_less (pos,rpos) then DepFlexAndRigid (pos,rpos) else x
| Some (DepFlexAndRigid (fpos,rpos) as x) ->
if argument_less (pos,fpos) then DepFlexAndRigid (pos,rpos) else x
| Some (DepFlex fpos as x) ->
if argument_less (pos,fpos) then DepFlex pos else x
| Some Manual -> assert false
in na, Some e
(* modified is_rigid_reference with a truncated env *)
let is_flexible_reference env bound depth f =
match kind_of_term f with
| Rel n when n >= bound+depth -> (* inductive type *) false
| Rel n when n >= depth -> (* previous argument *) true
| Rel n -> (* since local definitions have been expanded *) false
| Const kn ->
let cb = Environ.lookup_constant kn env in
(match cb.const_body with Def _ -> true | _ -> false)
| Var id ->
let (_,value,_) = Environ.lookup_named id env in value <> None
| Ind _ | Construct _ -> false
| _ -> true
let push_lift d (e,n) = (push_rel d e,n+1)
let is_reversible_pattern bound depth f l =
isRel f & let n = destRel f in (n < bound+depth) & (n >= depth) &
array_for_all (fun c -> isRel c & destRel c < depth) l &
array_distinct l
(* Precondition: rels in env are for inductive types only *)
let add_free_rels_until strict strongly_strict revpat bound env m pos acc =
let rec frec rig (env,depth as ed) c =
let hd = if strict then whd_betadeltaiota env c else c in
let c = if strongly_strict then hd else c in
match kind_of_term hd with
| Rel n when (n < bound+depth) & (n >= depth) ->
let i = bound + depth - n - 1 in
acc.(i) <- update pos rig acc.(i)
| App (f,l) when revpat & is_reversible_pattern bound depth f l ->
let i = bound + depth - destRel f - 1 in
acc.(i) <- update pos rig acc.(i)
| App (f,_) when rig & is_flexible_reference env bound depth f ->
if strict then () else
iter_constr_with_full_binders push_lift (frec false) ed c
| Case _ when rig ->
if strict then () else
iter_constr_with_full_binders push_lift (frec false) ed c
| Evar _ -> ()
| _ ->
iter_constr_with_full_binders push_lift (frec rig) ed c
in
frec true (env,1) m; acc
let rec is_rigid_head t = match kind_of_term t with
| Rel _ | Evar _ -> false
| Ind _ | Const _ | Var _ | Sort _ -> true
| Case (_,_,f,_) -> is_rigid_head f
| App (f,args) ->
(match kind_of_term f with
| Fix ((fi,i),_) -> is_rigid_head (args.(fi.(i)))
| _ -> is_rigid_head f)
| Lambda _ | LetIn _ | Construct _ | CoFix _ | Fix _
| Prod _ | Meta _ | Cast _ -> assert false
(* calcule la liste des arguments implicites *)
let find_displayed_name_in all avoid na (_,b as envnames_b) =
let flag = RenamingElsewhereFor envnames_b in
if all then compute_and_force_displayed_name_in flag avoid na b
else compute_displayed_name_in flag avoid na b
let compute_implicits_gen strict strongly_strict revpat contextual all env t =
let rigid = ref true in
let rec aux env avoid n names t =
let t = whd_betadeltaiota env t in
match kind_of_term t with
| Prod (na,a,b) ->
let na',avoid' = find_displayed_name_in all avoid na (names,b) in
add_free_rels_until strict strongly_strict revpat n env a (Hyp (n+1))
(aux (push_rel (na',None,a) env) avoid' (n+1) (na'::names) b)
| _ ->
rigid := is_rigid_head t;
let names = List.rev names in
let v = Array.map (fun na -> na,None) (Array.of_list names) in
if contextual then
add_free_rels_until strict strongly_strict revpat n env t Conclusion v
else v
in
match kind_of_term (whd_betadeltaiota env t) with
| Prod (na,a,b) ->
let na',avoid = find_displayed_name_in all [] na ([],b) in
let v = aux (push_rel (na',None,a) env) avoid 1 [na'] b in
!rigid, Array.to_list v
| _ -> true, []
let compute_implicits_flags env f all t =
compute_implicits_gen
(f.strict or f.strongly_strict) f.strongly_strict
f.reversible_pattern f.contextual all env t
let compute_auto_implicits env flags enriching t =
if enriching then compute_implicits_flags env flags true t
else compute_implicits_gen false false false true true env t
let compute_implicits_names env t =
let _, impls = compute_implicits_gen false false false false true env t in
List.map fst impls
(* Extra information about implicit arguments *)
type maximal_insertion = bool (* true = maximal contextual insertion *)
type force_inference = bool (* true = always infer, never turn into evar/subgoal *)
type implicit_status =
(* None = Not implicit *)
(identifier * implicit_explanation * (maximal_insertion * force_inference)) option
type implicit_side_condition = DefaultImpArgs | LessArgsThan of int
type implicits_list = implicit_side_condition * implicit_status list
let is_status_implicit = function
| None -> false
| _ -> true
let name_of_implicit = function
| None -> anomaly "Not an implicit argument"
| Some (id,_,_) -> id
let maximal_insertion_of = function
| Some (_,_,(b,_)) -> b
| None -> anomaly "Not an implicit argument"
let force_inference_of = function
| Some (_, _, (_, b)) -> b
| None -> anomaly "Not an implicit argument"
(* [in_ctx] means we know the expected type, [n] is the index of the argument *)
let is_inferable_implicit in_ctx n = function
| None -> false
| Some (_,DepRigid (Hyp p),_) -> in_ctx or n >= p
| Some (_,DepFlex (Hyp p),_) -> false
| Some (_,DepFlexAndRigid (_,Hyp q),_) -> in_ctx or n >= q
| Some (_,DepRigid Conclusion,_) -> in_ctx
| Some (_,DepFlex Conclusion,_) -> false
| Some (_,DepFlexAndRigid (_,Conclusion),_) -> in_ctx
| Some (_,Manual,_) -> true
let positions_of_implicits (_,impls) =
let rec aux n = function
[] -> []
| Some _ :: l -> n :: aux (n+1) l
| None :: l -> aux (n+1) l
in aux 1 impls
(* Manage user-given implicit arguments *)
let rec prepare_implicits f = function
| [] -> []
| (Anonymous, Some _)::_ -> anomaly "Unnamed implicit"
| (Name id, Some imp)::imps ->
let imps' = prepare_implicits f imps in
Some (id,imp,(set_maximality imps' f.maximal,true)) :: imps'
| _::imps -> None :: prepare_implicits f imps
let set_implicit id imp insmax =
(id,(match imp with None -> Manual | Some imp -> imp),insmax)
let rec assoc_by_pos k = function
(ExplByPos (k', x), b) :: tl when k = k' -> (x,b), tl
| hd :: tl -> let (x, tl) = assoc_by_pos k tl in x, hd :: tl
| [] -> raise Not_found
let check_correct_manual_implicits autoimps l =
List.iter (function
| ExplByName id,(b,fi,forced) ->
if not forced then
error ("Wrong or non-dependent implicit argument name: "^(string_of_id id)^".")
| ExplByPos (i,_id),_t ->
if i<1 or i>List.length autoimps then
error ("Bad implicit argument number: "^(string_of_int i)^".")
else
errorlabstrm ""
(str "Cannot set implicit argument number " ++ int i ++
str ": it has no name.")) l
let set_manual_implicits env flags enriching autoimps l =
let try_forced k l =
try
let (id, (b, fi, fo)), l' = assoc_by_pos k l in
if fo then
let id = match id with Some id -> id | None -> id_of_string ("arg_" ^ string_of_int k) in
l', Some (id,Manual,(b,fi))
else l, None
with Not_found -> l, None
in
if not (list_distinct l) then
error ("Some parameters are referred more than once.");
(* Compare with automatic implicits to recover printing data and names *)
let rec merge k l = function
| (Name id,imp)::imps ->
let l',imp,m =
try
let (b, fi, fo) = List.assoc (ExplByName id) l in
List.remove_assoc (ExplByName id) l, (Some Manual), (Some (b, fi))
with Not_found ->
try
let (id, (b, fi, fo)), l' = assoc_by_pos k l in
l', (Some Manual), (Some (b,fi))
with Not_found ->
l,imp, if enriching && imp <> None then Some (flags.maximal,true) else None
in
let imps' = merge (k+1) l' imps in
let m = Option.map (fun (b,f) -> set_maximality imps' b, f) m in
Option.map (set_implicit id imp) m :: imps'
| (Anonymous,imp)::imps ->
let l', forced = try_forced k l in
forced :: merge (k+1) l' imps
| [] when l = [] -> []
| [] ->
check_correct_manual_implicits autoimps l;
[]
in
merge 1 l autoimps
let compute_semi_auto_implicits env f manual t =
match manual with
| [] ->
if not f.auto then [DefaultImpArgs, []]
else let _,l = compute_implicits_flags env f false t in
[DefaultImpArgs, prepare_implicits f l]
| _ ->
let _,autoimpls = compute_auto_implicits env f f.auto t in
[DefaultImpArgs, set_manual_implicits env f f.auto autoimpls manual]
let compute_implicits env t = compute_semi_auto_implicits env !implicit_args [] t
(*s Constants. *)
let compute_constant_implicits flags manual cst =
let env = Global.env () in
compute_semi_auto_implicits env flags manual (Typeops.type_of_constant env cst)
(*s Inductives and constructors. Their implicit arguments are stored
in an array, indexed by the inductive number, of pairs $(i,v)$ where
$i$ are the implicit arguments of the inductive and $v$ the array of
implicit arguments of the constructors. *)
let compute_mib_implicits flags manual kn =
let env = Global.env () in
let mib = lookup_mind kn env in
let ar =
Array.to_list
(Array.map (* No need to lift, arities contain no de Bruijn *)
(fun mip ->
(Name mip.mind_typename, None, type_of_inductive env (mib,mip)))
mib.mind_packets) in
let env_ar = push_rel_context ar env in
let imps_one_inductive i mip =
let ind = (kn,i) in
let ar = type_of_inductive env (mib,mip) in
((IndRef ind,compute_semi_auto_implicits env flags manual ar),
Array.mapi (fun j c ->
(ConstructRef (ind,j+1),compute_semi_auto_implicits env_ar flags manual c))
mip.mind_nf_lc)
in
Array.mapi imps_one_inductive mib.mind_packets
let compute_all_mib_implicits flags manual kn =
let imps = compute_mib_implicits flags manual kn in
List.flatten
(array_map_to_list (fun (ind,cstrs) -> ind::Array.to_list cstrs) imps)
(*s Variables. *)
let compute_var_implicits flags manual id =
let env = Global.env () in
let (_,_,ty) = lookup_named id env in
compute_semi_auto_implicits env flags manual ty
(* Implicits of a global reference. *)
let compute_global_implicits flags manual = function
| VarRef id -> compute_var_implicits flags manual id
| ConstRef kn -> compute_constant_implicits flags manual kn
| IndRef (kn,i) ->
let ((_,imps),_) = (compute_mib_implicits flags manual kn).(i) in imps
| ConstructRef ((kn,i),j) ->
let (_,cimps) = (compute_mib_implicits flags manual kn).(i) in snd cimps.(j-1)
(* Merge a manual explicitation with an implicit_status list *)
let merge_impls (cond,oldimpls) (_,newimpls) =
let oldimpls,usersuffiximpls = list_chop (List.length newimpls) oldimpls in
cond, (List.map2 (fun orig ni ->
match orig with
| Some (_, Manual, _) -> orig
| _ -> ni) oldimpls newimpls)@usersuffiximpls
(* Caching implicits *)
type implicit_interactive_request =
| ImplAuto
| ImplManual of int
type implicit_discharge_request =
| ImplLocal
| ImplConstant of constant * implicits_flags
| ImplMutualInductive of mutual_inductive * implicits_flags
| ImplInteractive of global_reference * implicits_flags *
implicit_interactive_request
let implicits_table = ref Refmap.empty
let implicits_of_global ref =
try
let l = Refmap.find ref !implicits_table in
try
let rename_l = Arguments_renaming.arguments_names ref in
let rename imp name = match imp, name with
| Some (_, x,y), Name id -> Some (id, x,y)
| _ -> imp in
List.map2 (fun (t, il) rl -> t, List.map2 rename il rl) l rename_l
with Not_found -> l
| Invalid_argument _ ->
anomaly "renamings list and implicits list have different lenghts"
with Not_found -> [DefaultImpArgs,[]]
let cache_implicits_decl (ref,imps) =
implicits_table := Refmap.add ref imps !implicits_table
let load_implicits _ (_,(_,l)) = List.iter cache_implicits_decl l
let cache_implicits o =
load_implicits 1 o
let subst_implicits_decl subst (r,imps as o) =
let r' = fst (subst_global subst r) in if r==r' then o else (r',imps)
let subst_implicits (subst,(req,l)) =
(ImplLocal,list_smartmap (subst_implicits_decl subst) l)
let impls_of_context ctx =
List.rev_map (fun (id,impl,_,_) -> if impl = Lib.Implicit then Some (id, Manual, (true,true)) else None)
(List.filter (fun (_,_,b,_) -> b = None) ctx)
let section_segment_of_reference = function
| ConstRef con -> section_segment_of_constant con
| IndRef (kn,_) | ConstructRef ((kn,_),_) ->
section_segment_of_mutual_inductive kn
| _ -> []
let adjust_side_condition p = function
| LessArgsThan n -> LessArgsThan (n+p)
| DefaultImpArgs -> DefaultImpArgs
let add_section_impls vars extra_impls (cond,impls) =
let p = List.length vars - List.length extra_impls in
adjust_side_condition p cond, extra_impls @ impls
let discharge_implicits (_,(req,l)) =
match req with
| ImplLocal -> None
| ImplInteractive (ref,flags,exp) ->
(try
let vars = section_segment_of_reference ref in
let ref' = if isVarRef ref then ref else pop_global_reference ref in
let extra_impls = impls_of_context vars in
let l' = [ref', List.map (add_section_impls vars extra_impls) (snd (List.hd l))] in
Some (ImplInteractive (ref',flags,exp),l')
with Not_found -> (* ref not defined in this section *) Some (req,l))
| ImplConstant (con,flags) ->
(try
let con' = pop_con con in
let vars = section_segment_of_constant con in
let extra_impls = impls_of_context vars in
let l' = [ConstRef con',List.map (add_section_impls vars extra_impls) (snd (List.hd l))] in
Some (ImplConstant (con',flags),l')
with Not_found -> (* con not defined in this section *) Some (req,l))
| ImplMutualInductive (kn,flags) ->
(try
let l' = List.map (fun (gr, l) ->
let vars = section_segment_of_reference gr in
let extra_impls = impls_of_context vars in
((if isVarRef gr then gr else pop_global_reference gr),
List.map (add_section_impls vars extra_impls) l)) l
in
Some (ImplMutualInductive (pop_kn kn,flags),l')
with Not_found -> (* ref not defined in this section *) Some (req,l))
let rebuild_implicits (req,l) =
match req with
| ImplLocal -> assert false
| ImplConstant (con,flags) ->
let oldimpls = snd (List.hd l) in
let newimpls = compute_constant_implicits flags [] con in
req, [ConstRef con, List.map2 merge_impls oldimpls newimpls]
| ImplMutualInductive (kn,flags) ->
let newimpls = compute_all_mib_implicits flags [] kn in
let rec aux olds news =
match olds, news with
| (_, oldimpls) :: old, (gr, newimpls) :: tl ->
(gr, List.map2 merge_impls oldimpls newimpls) :: aux old tl
| [], [] -> []
| _, _ -> assert false
in req, aux l newimpls
| ImplInteractive (ref,flags,o) ->
(if isVarRef ref && is_in_section ref then ImplLocal else req),
match o with
| ImplAuto ->
let oldimpls = snd (List.hd l) in
let newimpls = compute_global_implicits flags [] ref in
[ref,List.map2 merge_impls oldimpls newimpls]
| ImplManual userimplsize ->
let oldimpls = snd (List.hd l) in
if flags.auto then
let newimpls = List.hd (compute_global_implicits flags [] ref) in
let p = List.length (snd newimpls) - userimplsize in
let newimpls = on_snd (list_firstn p) newimpls in
[ref,List.map (fun o -> merge_impls o newimpls) oldimpls]
else
[ref,oldimpls]
let classify_implicits (req,_ as obj) =
if req = ImplLocal then Dispose else Substitute obj
type implicits_obj =
implicit_discharge_request *
(global_reference * implicits_list list) list
let inImplicits : implicits_obj -> obj =
declare_object {(default_object "IMPLICITS") with
cache_function = cache_implicits;
load_function = load_implicits;
subst_function = subst_implicits;
classify_function = classify_implicits;
discharge_function = discharge_implicits;
rebuild_function = rebuild_implicits }
let is_local local ref = local || isVarRef ref && is_in_section ref
let declare_implicits_gen req flags ref =
let imps = compute_global_implicits flags [] ref in
add_anonymous_leaf (inImplicits (req,[ref,imps]))
let declare_implicits local ref =
let flags = { !implicit_args with auto = true } in
let req =
if is_local local ref then ImplLocal else ImplInteractive(ref,flags,ImplAuto) in
declare_implicits_gen req flags ref
let declare_var_implicits id =
let flags = !implicit_args in
declare_implicits_gen ImplLocal flags (VarRef id)
let declare_constant_implicits con =
let flags = !implicit_args in
declare_implicits_gen (ImplConstant (con,flags)) flags (ConstRef con)
let declare_mib_implicits kn =
let flags = !implicit_args in
let imps = array_map_to_list
(fun (ind,cstrs) -> ind::(Array.to_list cstrs))
(compute_mib_implicits flags [] kn) in
add_anonymous_leaf
(inImplicits (ImplMutualInductive (kn,flags),List.flatten imps))
(* Declare manual implicits *)
type manual_explicitation = Topconstr.explicitation * (bool * bool * bool)
type manual_implicits = manual_explicitation list
let compute_implicits_with_manual env typ enriching l =
let _,autoimpls = compute_auto_implicits env !implicit_args enriching typ in
set_manual_implicits env !implicit_args enriching autoimpls l
let check_inclusion l =
(* Check strict inclusion *)
let rec aux = function
| n1::(n2::_ as nl) ->
if n1 <= n2 then
error "Sequences of implicit arguments must be of different lengths";
aux nl
| _ -> () in
aux (List.map (fun (imps,_) -> List.length imps) l)
let check_rigidity isrigid =
if not isrigid then
errorlabstrm "" (strbrk "Multiple sequences of implicit arguments available only for references that cannot be applied to an arbitrarily large number of arguments.")
let declare_manual_implicits local ref ?enriching l =
let flags = !implicit_args in
let env = Global.env () in
let t = Global.type_of_global ref in
let enriching = Option.default flags.auto enriching in
let isrigid,autoimpls = compute_auto_implicits env flags enriching t in
let l' = match l with
| [] -> assert false
| [l] ->
[DefaultImpArgs, set_manual_implicits env flags enriching autoimpls l]
| _ ->
check_rigidity isrigid;
let l = List.map (fun imps -> (imps,List.length imps)) l in
let l = Sort.list (fun (_,n1) (_,n2) -> n1 > n2) l in
check_inclusion l;
let nargs = List.length autoimpls in
List.map (fun (imps,n) ->
(LessArgsThan (nargs-n),
set_manual_implicits env flags enriching autoimpls imps)) l in
let req =
if is_local local ref then ImplLocal
else ImplInteractive(ref,flags,ImplManual (List.length autoimpls))
in
add_anonymous_leaf (inImplicits (req,[ref,l']))
let maybe_declare_manual_implicits local ref ?enriching l =
if l = [] then ()
else declare_manual_implicits local ref ?enriching [l]
let extract_impargs_data impls =
let rec aux p = function
| (DefaultImpArgs, imps)::_ -> [None,imps]
| (LessArgsThan n, imps)::l -> (Some (p,n),imps) :: aux (n+1) l
| [] -> [] in
aux 0 impls
let lift_implicits n =
List.map (fun x ->
match fst x with
ExplByPos (k, id) -> ExplByPos (k + n, id), snd x
| _ -> x)
let make_implicits_list l = [DefaultImpArgs, l]
let rec drop_first_implicits p l =
if p = 0 then l else match l with
| _,[] as x -> x
| DefaultImpArgs,imp::impls ->
drop_first_implicits (p-1) (DefaultImpArgs,impls)
| LessArgsThan n,imp::impls ->
let n = if is_status_implicit imp then n-1 else n in
drop_first_implicits (p-1) (LessArgsThan n,impls)
let rec select_impargs_size n = function
| [] -> [] (* Tolerance for (DefaultImpArgs,[]) *)
| [_, impls] | (DefaultImpArgs, impls)::_ -> impls
| (LessArgsThan p, impls)::l ->
if n <= p then impls else select_impargs_size n l
let rec select_stronger_impargs = function
| [] -> [] (* Tolerance for (DefaultImpArgs,[]) *)
| (_,impls)::_ -> impls
(*s Registration as global tables *)
let init () = implicits_table := Refmap.empty
let freeze () = !implicits_table
let unfreeze t = implicits_table := t
let _ =
Summary.declare_summary "implicits"
{ Summary.freeze_function = freeze;
Summary.unfreeze_function = unfreeze;
Summary.init_function = init }
|