summaryrefslogtreecommitdiff
path: root/library/declare.ml
blob: 07810e3c38035e3264d18c2360a99af066cc3146 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id: declare.ml 10840 2008-04-23 21:29:34Z herbelin $ *)

(** This module is about the low-level declaration of logical objects *)

open Pp
open Util
open Names
open Libnames
open Nameops
open Term
open Sign
open Declarations
open Entries
open Libobject
open Lib
open Impargs
open Safe_typing
open Cooking
open Decls
open Decl_kinds

(** XML output hooks *)

let xml_declare_variable = ref (fun (sp:object_name) -> ())
let xml_declare_constant = ref (fun (sp:bool * constant)-> ())
let xml_declare_inductive = ref (fun (sp:bool * object_name) -> ())

let if_xml f x = if !Flags.xml_export then f x else ()

let set_xml_declare_variable f = xml_declare_variable := if_xml f
let set_xml_declare_constant f = xml_declare_constant := if_xml f
let set_xml_declare_inductive f = xml_declare_inductive := if_xml f

(** Declaration of section variables and local definitions *)

type section_variable_entry =
  | SectionLocalDef of constr * types option * bool (* opacity *)
  | SectionLocalAssum of types * bool * bool (* Implicit status, Keep *)

type variable_declaration = dir_path * section_variable_entry * logical_kind

let cache_variable ((sp,_),o) =
  match o with
  | Inl cst -> Global.add_constraints cst
  | Inr (id,(p,d,mk)) ->
  (* Constr raisonne sur les noms courts *)
  if variable_exists id then
    errorlabstrm "cache_variable" (pr_id id ++ str " already exists");
  let impl,opaq,cst,keep = match d with (* Fails if not well-typed *)
    | SectionLocalAssum (ty, impl, keep) ->
        let cst = Global.push_named_assum (id,ty) in
        impl, true, cst, (if keep then Some ty else None)
    | SectionLocalDef (c,t,opaq) -> 
        let cst = Global.push_named_def (id,c,t) in
        false, opaq, cst, None in
  Nametab.push (Nametab.Until 1) (restrict_path 0 sp) (VarRef id);
  add_section_variable id impl keep;
  Dischargedhypsmap.set_discharged_hyps sp [];
  add_variable_data id (p,opaq,cst,mk)

let discharge_variable (_,o) = match o with
  | Inr (id,_) -> Some (Inl (variable_constraints id))
  | Inl _ -> Some o

let (inVariable, outVariable) =
  declare_object { (default_object "VARIABLE") with
    cache_function = cache_variable;
    discharge_function = discharge_variable;
    classify_function = (fun _ -> Dispose) }

(* for initial declaration *)
let declare_variable id obj =
  let oname = add_leaf id (inVariable (Inr (id,obj))) in
  declare_var_implicits id;
  Notation.declare_ref_arguments_scope (VarRef id);
  Heads.declare_head (EvalVarRef id);
  !xml_declare_variable oname;
  oname

(** Declaration of constants and parameters *)

type constant_declaration = constant_entry * logical_kind

(* At load-time, the segment starting from the module name to the discharge *)
(* section (if Remark or Fact) is needed to access a construction *)
let load_constant i ((sp,kn),(_,_,kind)) =
  if Nametab.exists_cci sp then
    errorlabstrm "cache_constant" 
      (pr_id (basename sp) ++ str " already exists");
  Nametab.push (Nametab.Until i) sp (ConstRef (constant_of_kn kn));
  add_constant_kind (constant_of_kn kn) kind

(* Opening means making the name without its module qualification available *)
let open_constant i ((sp,kn),_) =
  Nametab.push (Nametab.Exactly i) sp (ConstRef (constant_of_kn kn))

let cache_constant ((sp,kn),(cdt,dhyps,kind)) =
  let id = basename sp in
  let _,dir,_ = repr_kn kn in
  if variable_exists id or Nametab.exists_cci sp then
    errorlabstrm "cache_constant" (pr_id id ++ str " already exists");
  let kn' = Global.add_constant dir id cdt in
  assert (kn' = constant_of_kn kn);
  Nametab.push (Nametab.Until 1) sp (ConstRef (constant_of_kn kn));
  add_section_constant kn' (Global.lookup_constant kn').const_hyps;
  Dischargedhypsmap.set_discharged_hyps sp dhyps;
  add_constant_kind (constant_of_kn kn) kind

let discharged_hyps kn sechyps =
  let (_,dir,_) = repr_kn kn in
  let args = array_map_to_list destVar (instance_from_named_context sechyps) in
  List.rev (List.map (Libnames.make_path dir) args)

let discharge_constant ((sp,kn),(cdt,dhyps,kind)) =
  let con = constant_of_kn kn in
  let cb = Global.lookup_constant con in
  let repl = replacement_context () in
  let sechyps = section_segment_of_constant con in
  let recipe = { d_from=cb; d_modlist=repl; d_abstract=sechyps } in
  Some (GlobalRecipe recipe,(discharged_hyps kn sechyps)@dhyps,kind)

(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_constant_entry = ConstantEntry (ParameterEntry (mkProp,false))

let dummy_constant (ce,_,mk) = dummy_constant_entry,[],mk

let export_constant cst = Some (dummy_constant cst)

let classify_constant (_,cst) = Substitute (dummy_constant cst)

let (inConstant, outConstant) =
  declare_object { (default_object "CONSTANT") with
    cache_function = cache_constant;
    load_function = load_constant;
    open_function = open_constant;
    classify_function = classify_constant;
    subst_function = ident_subst_function;
    discharge_function = discharge_constant;
    export_function = export_constant } 

let hcons_constant_declaration = function
  | DefinitionEntry ce when !Flags.hash_cons_proofs ->
      let (hcons1_constr,_) = hcons_constr (hcons_names()) in
      DefinitionEntry
       { const_entry_body = hcons1_constr ce.const_entry_body;
	 const_entry_type = Option.map hcons1_constr ce.const_entry_type;
         const_entry_opaque = ce.const_entry_opaque; 
         const_entry_boxed = ce.const_entry_boxed }
  | cd -> cd

let declare_constant_common id dhyps (cd,kind) =
  let (sp,kn) = add_leaf id (inConstant (cd,dhyps,kind)) in
  let kn = constant_of_kn kn in
  declare_constant_implicits kn;
  Heads.declare_head (EvalConstRef kn);
  Notation.declare_ref_arguments_scope (ConstRef kn);
  kn

let declare_constant_gen internal id (cd,kind) =
  let cd = hcons_constant_declaration cd in
  let kn = declare_constant_common id [] (ConstantEntry cd,kind) in
  !xml_declare_constant (internal,kn);
  kn

let declare_internal_constant = declare_constant_gen true
let declare_constant = declare_constant_gen false

(** Declaration of inductive blocks *)

let declare_inductive_argument_scopes kn mie =
  list_iter_i (fun i {mind_entry_consnames=lc} ->
    Notation.declare_ref_arguments_scope (IndRef (kn,i));
    for j=1 to List.length lc do
      Notation.declare_ref_arguments_scope (ConstructRef ((kn,i),j));
    done) mie.mind_entry_inds

let inductive_names sp kn mie =
  let (dp,_) = repr_path sp in
  let names, _ = 
    List.fold_left
      (fun (names, n) ind ->
	 let ind_p = (kn,n) in
	 let names, _ =
	   List.fold_left
	     (fun (names, p) l ->
		let sp = 
		  Libnames.make_path dp l
		in
		  ((sp, ConstructRef (ind_p,p)) :: names, p+1))
	     (names, 1) ind.mind_entry_consnames in
	 let sp = Libnames.make_path dp ind.mind_entry_typename
	 in
	   ((sp, IndRef ind_p) :: names, n+1))
      ([], 0) mie.mind_entry_inds
  in names

let check_exists_inductive (sp,_) =
  (if variable_exists (basename sp) then
    errorlabstrm ""
      (pr_id (basename sp) ++ str " already exists"));
  if Nametab.exists_cci sp then
    let (_,id) = repr_path sp in
    errorlabstrm "" (pr_id id ++ str " already exists")

let load_inductive i ((sp,kn),(_,mie)) =
  let names = inductive_names sp kn mie in
  List.iter check_exists_inductive names;
  List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until i) sp ref) names

let open_inductive i ((sp,kn),(_,mie)) =
  let names = inductive_names sp kn mie in
  List.iter (fun (sp, ref) -> Nametab.push (Nametab.Exactly i) sp ref) names

let cache_inductive ((sp,kn),(dhyps,mie)) =
  let names = inductive_names sp kn mie in
  List.iter check_exists_inductive names;
  let id = basename sp in
  let _,dir,_ = repr_kn kn in
  let kn' = Global.add_mind dir id mie in
  assert (kn'=kn);
  add_section_kn kn (Global.lookup_mind kn').mind_hyps;
  Dischargedhypsmap.set_discharged_hyps sp dhyps;
  List.iter (fun (sp, ref) -> Nametab.push (Nametab.Until 1) sp ref) names

let discharge_inductive ((sp,kn),(dhyps,mie)) =
  let mie = Global.lookup_mind kn in
  let repl = replacement_context () in
  let sechyps = section_segment_of_mutual_inductive kn in
  Some (discharged_hyps kn sechyps,
        Discharge.process_inductive sechyps repl mie)

let dummy_one_inductive_entry mie = {
  mind_entry_typename = mie.mind_entry_typename;
  mind_entry_arity = mkProp;
  mind_entry_consnames = mie.mind_entry_consnames;
  mind_entry_lc = []
}

(* Hack to reduce the size of .vo: we keep only what load/open needs *)
let dummy_inductive_entry (_,m) = ([],{
  mind_entry_params = [];
  mind_entry_record = false;
  mind_entry_finite = true;
  mind_entry_inds = List.map dummy_one_inductive_entry m.mind_entry_inds })

let export_inductive x = Some (dummy_inductive_entry x)

let (inInductive, outInductive) =
  declare_object {(default_object "INDUCTIVE") with 
    cache_function = cache_inductive;
    load_function = load_inductive;
    open_function = open_inductive;
    classify_function = (fun (_,a) -> Substitute (dummy_inductive_entry a));
    subst_function = ident_subst_function;
    discharge_function = discharge_inductive;
    export_function = export_inductive } 

(* for initial declaration *)
let declare_mind isrecord mie =
  let id = match mie.mind_entry_inds with
    | ind::_ -> ind.mind_entry_typename
    | [] -> anomaly "cannot declare an empty list of inductives" in
  let (sp,kn as oname) = add_leaf id (inInductive ([],mie)) in
  declare_mib_implicits kn;
  declare_inductive_argument_scopes kn mie;
  !xml_declare_inductive (isrecord,oname);
  oname