1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* The following definitions are used by the function
[assumptions] which gives as an output the set of all
axioms and sections variables on which a given term depends
in a context (expectingly the Global context) *)
(* Initial author: Arnaud Spiwack
Module-traversing code: Pierre Letouzey *)
open Util
open Names
open Sign
open Univ
open Term
open Declarations
open Mod_subst
let cst_ord k1 k2 = kn_ord (canonical_con k1) (canonical_con k2)
type context_object =
| Variable of identifier (* A section variable or a Let definition *)
| Axiom of constant (* An axiom or a constant. *)
| Opaque of constant (* An opaque constant. *)
(* Defines a set of [assumption] *)
module OrderedContextObject =
struct
type t = context_object
let compare x y =
match x , y with
| Variable i1 , Variable i2 -> id_ord i1 i2
| Axiom k1 , Axiom k2 -> cst_ord k1 k2
| Opaque k1 , Opaque k2 -> cst_ord k1 k2
| Variable _ , Axiom _ -> -1
| Axiom _ , Variable _ -> 1
| Opaque _ , _ -> -1
| _, Opaque _ -> 1
end
module ContextObjectSet = Set.Make (OrderedContextObject)
module ContextObjectMap = Map.Make (OrderedContextObject)
(** For a constant c in a module sealed by an interface (M:T and
not M<:T), [Global.lookup_constant] may return a [constant_body]
without body. We fix this by looking in the implementation
of the module *)
let modcache = ref (MPmap.empty : structure_body MPmap.t)
let rec lookup_module_in_impl mp =
try Global.lookup_module mp
with Not_found ->
(* The module we search might not be exported by its englobing module(s).
We access the upper layer, and then do a manual search *)
match mp with
| MPfile _ | MPbound _ ->
raise Not_found (* should have been found by [lookup_module] *)
| MPdot (mp',lab') ->
let fields = memoize_fields_of_mp mp' in
match List.assoc lab' fields with
| SFBmodule mb -> mb
| _ -> assert false (* same label for a non-module ?! *)
and memoize_fields_of_mp mp =
try MPmap.find mp !modcache
with Not_found ->
let l = fields_of_mp mp in
modcache := MPmap.add mp l !modcache;
l
and fields_of_mp mp =
let mb = lookup_module_in_impl mp in
let fields,inner_mp,subs = fields_of_mb empty_subst mb [] in
let subs =
if inner_mp = mp then subs
else add_mp inner_mp mp mb.mod_delta subs
in
Modops.subst_signature subs fields
and fields_of_mb subs mb args =
let seb = match mb.mod_expr with
| None -> mb.mod_type (* cf. Declare Module *)
| Some seb -> seb
in
fields_of_seb subs mb.mod_mp seb args
(* TODO: using [empty_delta_resolver] below in [fields_of_seb]
is probably slightly incorrect. But:
a) I don't see currently what should be used instead
b) this shouldn't be critical for Print Assumption. At worse some
constants will have a canonical name which is non-canonical,
leading to failures in [Global.lookup_constant], but our own
[lookup_constant] should work.
*)
and fields_of_seb subs mp0 seb args = match seb with
| SEBstruct l ->
assert (args = []);
l, mp0, subs
| SEBident mp ->
let mb = lookup_module_in_impl (subst_mp subs mp) in
fields_of_mb subs mb args
| SEBapply (seb1,seb2,_) ->
(match seb2 with
| SEBident mp2 -> fields_of_seb subs mp0 seb1 (mp2::args)
| _ -> assert false) (* only legal application is to module names *)
| SEBfunctor (mbid,mtb,seb) ->
(match args with
| [] -> assert false (* we should only encounter applied functors *)
| mpa :: args ->
let subs = add_mbid mbid mpa empty_delta_resolver subs in
fields_of_seb subs mp0 seb args)
| SEBwith _ -> assert false (* should not appear in a mod_expr
or mod_type field *)
let lookup_constant_in_impl cst fallback =
try
let mp,dp,lab = repr_kn (canonical_con cst) in
let fields = memoize_fields_of_mp mp in
(* A module found this way is necessarily closed, in particular
our constant cannot be in an opened section : *)
match List.assoc lab fields with
| SFBconst cb -> cb
| _ -> assert false (* label not pointing to a constant ?! *)
with Not_found ->
(* Either:
- The module part of the constant isn't registered yet :
we're still in it, so the [constant_body] found earlier
(if any) was a true axiom.
- The label has not been found in the structure. This is an error *)
match fallback with
| Some cb -> cb
| None -> anomaly ("Print Assumption: unknown constant "^string_of_con cst)
let lookup_constant cst =
try
let cb = Global.lookup_constant cst in
if constant_has_body cb then cb
else lookup_constant_in_impl cst (Some cb)
with Not_found -> lookup_constant_in_impl cst None
let assumptions ?(add_opaque=false) st (* t *) =
modcache := MPmap.empty;
let (idts,knst) = st in
(* Infix definition for chaining function that accumulate
on a and a ContextObjectSet, ContextObjectMap. *)
let ( ** ) f1 f2 s m = let (s',m') = f1 s m in f2 s' m' in
(* This function eases memoization, by checking if an object is already
stored before trying and applying a function.
If the object is there, the function is not fired (we are in a
particular case where memoized object don't need a treatment at all).
If the object isn't there, it is stored and the function is fired*)
let try_and_go o f s m =
if ContextObjectSet.mem o s then
(s,m)
else
f (ContextObjectSet.add o s) m
in
let identity2 s m = (s,m)
in
(* Goes recursively into the term to see if it depends on assumptions.
The 3 important cases are :
- Const _ where we need to first unfold the constant and return
the needed assumptions of its body in the environment,
- Rel _ which means the term is a variable which has been bound
earlier by a Lambda or a Prod (returns [] ),
- Var _ which means that the term refers to a section variable or
a "Let" definition, in the former it is an assumption of [t],
in the latter is must be unfolded like a Const.
The other cases are straightforward recursion.
Calls to the environment are memoized, thus avoiding to explore
the DAG of the environment as if it was a tree (can cause
exponential behavior and prevent the algorithm from terminating
in reasonable time). [s] is a set of [context_object], representing
the object already visited.*)
let rec do_constr t s acc =
let rec iter t =
match kind_of_term t with
| Var id -> do_memoize_id id
| Meta _ | Evar _ -> assert false
| Cast (e1,_,e2) | Prod (_,e1,e2) | Lambda (_,e1,e2) ->
(iter e1)**(iter e2)
| LetIn (_,e1,e2,e3) -> (iter e1)**(iter e2)**(iter e3)
| App (e1, e_array) -> (iter e1)**(iter_array e_array)
| Case (_,e1,e2,e_array) -> (iter e1)**(iter e2)**(iter_array e_array)
| Fix (_,(_, e1_array, e2_array)) | CoFix (_,(_,e1_array, e2_array)) ->
(iter_array e1_array) ** (iter_array e2_array)
| Const kn -> do_memoize_kn kn
| _ -> identity2 (* closed atomic types + rel *)
and iter_array a = Array.fold_right (fun e f -> (iter e)**f) a identity2
in iter t s acc
and add_id id s acc =
(* a Var can be either a variable, or a "Let" definition.*)
match Global.lookup_named id with
| (_,None,t) ->
(s,ContextObjectMap.add (Variable id) t acc)
| (_,Some bdy,_) -> do_constr bdy s acc
and do_memoize_id id =
try_and_go (Variable id) (add_id id)
and add_kn kn s acc =
let cb = lookup_constant kn in
let do_type cst =
let ctype =
match cb.Declarations.const_type with
| PolymorphicArity (ctx,a) -> mkArity (ctx, Type a.poly_level)
| NonPolymorphicType t -> t
in
(s,ContextObjectMap.add cst ctype acc)
in
let (s,acc) =
if add_opaque && Declarations.constant_has_body cb
&& (Declarations.is_opaque cb || not (Cpred.mem kn knst))
then
do_type (Opaque kn)
else (s,acc)
in
match Declarations.body_of_constant cb with
| None -> do_type (Axiom kn)
| Some body -> do_constr (Declarations.force body) s acc
and do_memoize_kn kn =
try_and_go (Axiom kn) (add_kn kn)
in
fun t ->
snd (do_constr t
(ContextObjectSet.empty)
(ContextObjectMap.empty))
|