1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* The following module is a specialized version of [Hashtbl] that is
a better space saver. Actually, [Hashcons] instanciates [Hashtbl.t]
with [constr] used both as a key and as an image. Thus, in each
cell of the internal bucketlist, there are two representations of
the same value. In this implementation, there is only one.
Besides, the responsibility of computing the hash function is now
given to the caller, which makes possible the interleaving of the
hash key computation and the hash-consing. *)
module type Hashtype = sig
type t
val equals : t -> t -> bool
end
module type S = sig
type elt
(* [may_add_and_get key constr] uses [key] to look for [constr]
in the hash table [H]. If [constr] is in [H], returns the
specific representation that is stored in [H]. Otherwise,
[constr] is stored in [H] and will be used as the canonical
representation of this value in the future. *)
val may_add_and_get : int -> elt -> elt
end
module Make (E : Hashtype) =
struct
type elt = E.t
type bucketlist = Empty | Cons of elt * int * bucketlist
let initial_size = 19991
let table_data = ref (Array.make initial_size Empty)
let table_size = ref 0
let resize () =
let odata = !table_data in
let osize = Array.length odata in
let nsize = min (2 * osize + 1) Sys.max_array_length in
if nsize <> osize then begin
let ndata = Array.create nsize Empty in
let rec insert_bucket = function
| Empty -> ()
| Cons (key, hash, rest) ->
let nidx = hash mod nsize in
ndata.(nidx) <- Cons (key, hash, ndata.(nidx));
insert_bucket rest
in
for i = 0 to osize - 1 do insert_bucket odata.(i) done;
table_data := ndata
end
let add hash key =
let odata = !table_data in
let osize = Array.length odata in
let i = hash mod osize in
odata.(i) <- Cons (key, hash, odata.(i));
incr table_size;
if !table_size > osize lsl 1 then resize ()
let find_rec hash key bucket =
let rec aux = function
| Empty ->
add hash key; key
| Cons (k, h, rest) ->
if hash == h && E.equals key k then k else aux rest
in
aux bucket
let may_add_and_get hash key =
let odata = !table_data in
match odata.(hash mod (Array.length odata)) with
| Empty -> add hash key; key
| Cons (k1, h1, rest1) ->
if hash == h1 && E.equals key k1 then k1 else
match rest1 with
| Empty -> add hash key; key
| Cons (k2, h2, rest2) ->
if hash == h2 && E.equals key k2 then k2 else
match rest2 with
| Empty -> add hash key; key
| Cons (k3, h3, rest3) ->
if hash == h3 && E.equals key k3 then k3
else find_rec hash key rest3
end
module Combine = struct
(* These are helper functions to combine the hash keys in a similar
way as [Hashtbl.hash] does. The constants [alpha] and [beta] must
be prime numbers. There were chosen empirically. Notice that the
problem of hashing trees is hard and there are plenty of study on
this topic. Therefore, there must be room for improvement here. *)
let alpha = 65599
let beta = 7
let combine x y = x * alpha + y
let combine3 x y z = combine x (combine y z)
let combine4 x y z t = combine x (combine3 y z t)
let combinesmall x y = beta * x + y
end
|