1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id:$ *)
(* Generic discrimination net implementation over recursive
types. This module implements a association data structure similar
to tries but working on any types (not just lists). It is a term
indexing datastructure, a generalization of the discrimination nets
described for example in W.W.McCune, 1992, related also to
generalized tries [Hinze, 2000].
You can add pairs of (term,identifier) into a dnet, where the
identifier is *unique*, and search terms in a dnet filtering a
given pattern (retrievial of instances). It returns all identifiers
associated with terms matching the pattern. It also works the other
way around : You provide a set of patterns and a term, and it
returns all patterns which the term matches (retrievial of
generalizations). That's why you provide *patterns* everywhere.
Warning 1: Full unification doesn't work as for now. Make sure the
set of metavariables in the structure and in the queries are
distincts, or you'll get unexpected behaviours.
Warning 2: This structure is perfect, i.e. the set of candidates
returned is equal to the set of solutions. Beware of DeBruijn
shifts and sorts subtyping though (which makes the comparison not
symmetric, see term_dnet.ml).
The complexity of the search is (almost) the depth of the term.
To use it, you have to provide a module (Datatype) with the datatype
parametrized on the recursive argument. example:
type btree = type 'a btree0 =
| Leaf ===> | Leaf
| Node of btree * btree | Node of 'a * 'a
*)
(* datatype you want to build a dnet on *)
module type Datatype =
sig
(* parametric datatype. ['a] is morally the recursive argument *)
type 'a t
(* non-recursive mapping of subterms *)
val map : ('a -> 'b) -> 'a t -> 'b t
val map2 : ('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
(* non-recursive folding of subterms *)
val fold : ('a -> 'b -> 'a) -> 'a -> 'b t -> 'a
val fold2 : ('a -> 'b -> 'c -> 'a) -> 'a -> 'b t -> 'c t -> 'a
(* comparison of constructors *)
val compare : unit t -> unit t -> int
(* for each constructor, is it not-parametric on 'a? *)
val terminal : 'a t -> bool
(* [choose f w] applies f on ONE of the subterms of w *)
val choose : ('a -> 'b) -> 'a t -> 'b
end
module type S =
sig
type t
(* provided identifier type *)
type ident
(* provided metavariable type *)
type meta
(* provided parametrized datastructure *)
type 'a structure
(* returned sets of solutions *)
module Idset : Set.S with type elt=ident
(* a pattern is a term where each node can be a unification
variable *)
type 'a pattern =
| Term of 'a
| Meta of meta
type term_pattern = 'a structure pattern as 'a
val empty : t
(* [add t w i] adds a new association (w,i) in t. *)
val add : t -> term_pattern -> ident -> t
(* [find_all t] returns all identifiers contained in t. *)
val find_all : t -> Idset.t
(* [fold_pattern f acc p dn] folds f on each meta of p, passing the
meta and the sub-dnet under it. The result includes:
- Some set if identifiers were gathered on the leafs of the term
- None if the pattern contains no leaf (only Metas at the leafs).
*)
val fold_pattern :
('a -> (Idset.t * meta * t) -> 'a) -> 'a -> term_pattern -> t -> Idset.t option * 'a
(* [find_match p t] returns identifiers of all terms matching p in
t. *)
val find_match : term_pattern -> t -> Idset.t
(* set operations on dnets *)
val inter : t -> t -> t
val union : t -> t -> t
(* apply a function on each identifier and node of terms in a dnet *)
val map : (ident -> ident) -> (unit structure -> unit structure) -> t -> t
end
module Make :
functor (T:Datatype) ->
functor (Ident:Set.OrderedType) ->
functor (Meta:Set.OrderedType) ->
S with type ident = Ident.t
and type meta = Meta.t
and type 'a structure = 'a T.t
|