1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: bigint.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
(*i*)
open Pp
(*i*)
(***************************************************)
(* Basic operations on (unbounded) integer numbers *)
(***************************************************)
(* An integer is canonically represented as an array of k-digits blocs.
0 is represented by the empty array and -1 by the singleton [|-1|].
The first bloc is in the range ]0;10^k[ for positive numbers.
The first bloc is in the range ]-10^k;-1[ for negative ones.
All other blocs are numbers in the range [0;10^k[.
Negative numbers are represented using 2's complementation. For instance,
with 4-digits blocs, [-9655;6789] denotes -96543211
*)
(* The base is a power of 10 in order to facilitate the parsing and printing
of numbers in digital notation.
All functions, to the exception of to_string and of_string should work
with an arbitrary base, even if not a power of 10.
In practice, we set k=4 so that no overflow in ocaml machine words
(i.e. the interval [-2^30;2^30-1]) occur when multiplying two
numbers less than (10^k)
*)
(* The main parameters *)
let size =
let rec log10 n = if n < 10 then 0 else 1 + log10 (n / 10) in
(log10 max_int) / 2
let format_size =
(* How to parametrize a printf format *)
if size = 4 then Printf.sprintf "%04d"
else fun n ->
let rec aux j l n =
if j=size then l else aux (j+1) (string_of_int (n mod 10) :: l) (n/10)
in String.concat "" (aux 0 [] n)
(* The base is 10^size *)
let base =
let rec exp10 = function 0 -> 1 | n -> 10 * exp10 (n-1) in exp10 size
(* Basic numbers *)
let zero = [||]
let neg_one = [|-1|]
(* Sign of an integer *)
let is_strictly_neg n = n<>[||] && n.(0) < 0
let is_strictly_pos n = n<>[||] && n.(0) > 0
let is_neg_or_zero n = n=[||] or n.(0) < 0
let is_pos_or_zero n = n=[||] or n.(0) > 0
let normalize_pos n =
let k = ref 0 in
while !k < Array.length n & n.(!k) = 0 do incr k done;
Array.sub n !k (Array.length n - !k)
let normalize_neg n =
let k = ref 1 in
while !k < Array.length n & n.(!k) = base - 1 do incr k done;
let n' = Array.sub n !k (Array.length n - !k) in
if Array.length n' = 0 then [|-1|] else (n'.(0) <- n'.(0) - base; n')
let rec normalize n =
if Array.length n = 0 then n else
if n.(0) = -1 then normalize_neg n else normalize_pos n
let neg m =
if m = zero then zero else
let n = Array.copy m in
let i = ref (Array.length m - 1) in
while !i > 0 & n.(!i) = 0 do decr i done;
if !i > 0 then begin
n.(!i) <- base - n.(!i); decr i;
while !i > 0 do n.(!i) <- base - 1 - n.(!i); decr i done;
n.(0) <- - n.(0) - 1;
if n.(0) < -1 then (n.(0) <- n.(0) + base; Array.append [| -1 |] n) else
if n.(0) = - base then (n.(0) <- 0; Array.append [| -1 |] n)
else normalize n
end else (n.(0) <- - n.(0); n)
let push_carry r j =
let j = ref j in
while !j > 0 & r.(!j) < 0 do
r.(!j) <- r.(!j) + base; decr j; r.(!j) <- r.(!j) - 1
done;
while !j > 0 & r.(!j) >= base do
r.(!j) <- r.(!j) - base; decr j; r.(!j) <- r.(!j) + 1
done;
if r.(0) >= base then (r.(0) <- r.(0) - base; Array.append [| 1 |] r)
else if r.(0) < -base then (r.(0) <- r.(0) + 2*base; Array.append [| -2 |] r)
else if r.(0) = -base then (r.(0) <- 0; Array.append [| -1 |] r)
else normalize r
let add_to r a j =
if a = zero then r else begin
for i = Array.length r - 1 downto j+1 do
r.(i) <- r.(i) + a.(i-j);
if r.(i) >= base then (r.(i) <- r.(i) - base; r.(i-1) <- r.(i-1) + 1)
done;
r.(j) <- r.(j) + a.(0);
push_carry r j
end
let add n m =
let d = Array.length n - Array.length m in
if d > 0 then add_to (Array.copy n) m d else add_to (Array.copy m) n (-d)
let sub_to r a j =
if a = zero then r else begin
for i = Array.length r - 1 downto j+1 do
r.(i) <- r.(i) - a.(i-j);
if r.(i) < 0 then (r.(i) <- r.(i) + base; r.(i-1) <- r.(i-1) - 1)
done;
r.(j) <- r.(j) - a.(0);
push_carry r j
end
let sub n m =
let d = Array.length n - Array.length m in
if d >= 0 then sub_to (Array.copy n) m d
else let r = neg m in add_to r n (Array.length r - Array.length n)
let rec mult m n =
if m = zero or n = zero then zero else
let l = Array.length m + Array.length n in
let r = Array.create l 0 in
for i = Array.length m - 1 downto 0 do
for j = Array.length n - 1 downto 0 do
let p = m.(i) * n.(j) + r.(i+j+1) in
let (q,s) =
if p < 0
then (p + 1) / base - 1, (p + 1) mod base + base - 1
else p / base, p mod base in
r.(i+j+1) <- s;
if q <> 0 then r.(i+j) <- r.(i+j) + q;
done
done;
normalize r
let rec less_than_same_size m n i j =
i < Array.length m &&
(m.(i) < n.(j) or (m.(i) = n.(j) && less_than_same_size m n (i+1) (j+1)))
let less_than m n =
if is_strictly_neg m then
is_pos_or_zero n or Array.length m > Array.length n
or (Array.length m = Array.length n && less_than_same_size m n 0 0)
else
is_strictly_pos n && (Array.length m < Array.length n or
(Array.length m = Array.length n && less_than_same_size m n 0 0))
let equal m n = (m = n)
let less_than_shift_pos k m n =
(Array.length m - k < Array.length n)
or (Array.length m - k = Array.length n && less_than_same_size m n k 0)
let rec can_divide k m d i =
(i = Array.length d) or
(m.(k+i) > d.(i)) or
(m.(k+i) = d.(i) && can_divide k m d (i+1))
(* computes m - d * q * base^(|m|-k) in-place on positive numbers *)
let sub_mult m d q k =
if q <> 0 then
for i = Array.length d - 1 downto 0 do
let v = d.(i) * q in
m.(k+i) <- m.(k+i) - v mod base;
if m.(k+i) < 0 then (m.(k+i) <- m.(k+i) + base; m.(k+i-1) <- m.(k+i-1) -1);
if v >= base then m.(k+i-1) <- m.(k+i-1) - v / base;
done
let euclid m d =
let isnegm, m =
if is_strictly_neg m then (-1),neg m else 1,Array.copy m in
let isnegd, d = if is_strictly_neg d then (-1),neg d else 1,d in
if d = zero then raise Division_by_zero;
let q,r =
if less_than m d then (zero,m) else
let ql = Array.length m - Array.length d in
let q = Array.create (ql+1) 0 in
let i = ref 0 in
while not (less_than_shift_pos !i m d) do
if m.(!i)=0 then incr i else
if can_divide !i m d 0 then begin
let v =
if Array.length d > 1 && d.(0) <> m.(!i) then
(m.(!i) * base + m.(!i+1)) / (d.(0) * base + d.(1) + 1)
else
m.(!i) / d.(0) in
q.(!i) <- q.(!i) + v;
sub_mult m d v !i
end else begin
let v = (m.(!i) * base + m.(!i+1)) / (d.(0) + 1) in
q.(!i) <- q.(!i) + v / base;
sub_mult m d (v / base) !i;
q.(!i+1) <- q.(!i+1) + v mod base;
if q.(!i+1) >= base then
(q.(!i+1) <- q.(!i+1)-base; q.(!i) <- q.(!i)+1);
sub_mult m d (v mod base) (!i+1)
end
done;
(normalize q, normalize m) in
(if isnegd * isnegm = -1 then neg q else q),
(if isnegm = -1 then neg r else r)
(* Parsing/printing ordinary 10-based numbers *)
let of_string s =
let isneg = String.length s > 1 & s.[0] = '-' in
let n = if isneg then 1 else 0 in
let d = ref n in
while !d < String.length s && s.[!d] = '0' do incr d done;
if !d = String.length s then zero else
let r = (String.length s - !d) mod size in
let h = String.sub s (!d) r in
if !d = String.length s - 1 && isneg && h="1" then neg_one else
let e = if h<>"" then 1 else 0 in
let l = (String.length s - !d) / size in
let a = Array.create (l + e + n) 0 in
if isneg then begin
a.(0) <- (-1);
let carry = ref 0 in
for i=l downto 1 do
let v = int_of_string (String.sub s ((i-1)*size + !d +r) size)+ !carry in
if v <> 0 then (a.(i+e)<- base - v; carry := 1) else carry := 0
done;
if e=1 then a.(1) <- base - !carry - int_of_string h;
end
else begin
if e=1 then a.(0) <- int_of_string h;
for i=1 to l do
a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size)
done
end;
a
let to_string_pos sgn n =
if Array.length n = 0 then "0" else
sgn ^
String.concat ""
(string_of_int n.(0) :: List.map format_size (List.tl (Array.to_list n)))
let to_string n =
if is_strictly_neg n then to_string_pos "-" (neg n)
else to_string_pos "" n
(******************************************************************)
(* Optimized operations on (unbounded) integer numbers *)
(* integers smaller than base are represented as machine integers *)
(******************************************************************)
type bigint = Obj.t
let ints_of_int n =
if n >= base then [| n / base; n mod base |]
else if n <= - base then [| n / base - 1; n mod base + base |]
else if n = 0 then [| |] else [| n |]
let big_of_int n =
if n >= base then Obj.repr [| n / base; n mod base |]
else if n <= - base then Obj.repr [| n / base - 1; n mod base + base |]
else Obj.repr n
let big_of_ints n =
let n = normalize n in
if n = zero then Obj.repr 0 else
if Array.length n = 1 then Obj.repr n.(0) else
Obj.repr n
let coerce_to_int = (Obj.magic : Obj.t -> int)
let coerce_to_ints = (Obj.magic : Obj.t -> int array)
let ints_of_z n =
if Obj.is_int n then ints_of_int (coerce_to_int n)
else coerce_to_ints n
let app_pair f (m, n) =
(f m, f n)
let add m n =
if Obj.is_int m & Obj.is_int n
then big_of_int (coerce_to_int m + coerce_to_int n)
else big_of_ints (add (ints_of_z m) (ints_of_z n))
let sub m n =
if Obj.is_int m & Obj.is_int n
then big_of_int (coerce_to_int m - coerce_to_int n)
else big_of_ints (sub (ints_of_z m) (ints_of_z n))
let mult m n =
if Obj.is_int m & Obj.is_int n
then big_of_int (coerce_to_int m * coerce_to_int n)
else big_of_ints (mult (ints_of_z m) (ints_of_z n))
let euclid m n =
if Obj.is_int m & Obj.is_int n
then app_pair big_of_int
(coerce_to_int m / coerce_to_int n, coerce_to_int m mod coerce_to_int n)
else app_pair big_of_ints (euclid (ints_of_z m) (ints_of_z n))
let less_than m n =
if Obj.is_int m & Obj.is_int n
then coerce_to_int m < coerce_to_int n
else less_than (ints_of_z m) (ints_of_z n)
let neg n =
if Obj.is_int n then big_of_int (- (coerce_to_int n))
else big_of_ints (neg (ints_of_z n))
let of_string m = big_of_ints (of_string m)
let to_string m = to_string (ints_of_z m)
let zero = big_of_int 0
let one = big_of_int 1
let sub_1 n = sub n one
let add_1 n = add n one
let two = big_of_int 2
let mult_2 n = add n n
let div2_with_rest n =
let (q,b) = euclid n two in
(q, b = one)
let is_strictly_neg n = is_strictly_neg (ints_of_z n)
let is_strictly_pos n = is_strictly_pos (ints_of_z n)
let is_neg_or_zero n = is_neg_or_zero (ints_of_z n)
let is_pos_or_zero n = is_pos_or_zero (ints_of_z n)
let pr_bigint n = str (to_string n)
(* spiwack: computes n^m *)
(* The basic idea of the algorithm is that n^(2m) = (n^2)^m *)
(* In practice the algorithm performs :
k*n^0 = k
k*n^(2m) = k*(n*n)^m
k*n^(2m+1) = (n*k)*(n*n)^m *)
let pow =
let rec pow_aux odd_rest n m = (* odd_rest is the k from above *)
if is_neg_or_zero m then
odd_rest
else
let (quo,rem) = div2_with_rest m in
pow_aux
((* [if m mod 2 = 1]*)
if rem then
mult n odd_rest
else
odd_rest )
(* quo = [m/2] *)
(mult n n) quo
in
pow_aux one
(* Testing suite *)
let check () =
let numbers = [
"1";"2";"99";"100";"101";"9999";"10000";"10001";
"999999";"1000000";"1000001";"99999999";"100000000";"100000001";
"1234";"5678";"12345678";"987654321";
"-1";"-2";"-99";"-100";"-101";"-9999";"-10000";"-10001";
"-999999";"-1000000";"-1000001";"-99999999";"-100000000";"-100000001";
"-1234";"-5678";"-12345678";"-987654321";"0"
]
in
let eucl n m =
let n' = abs_float n and m' = abs_float m in
let q' = floor (n' /. m') in let r' = n' -. m' *. q' in
(if n *. m < 0. & q' <> 0. then -. q' else q'),
(if n < 0. then -. r' else r') in
let round f = floor (abs_float f +. 0.5) *. (if f < 0. then -1. else 1.) in
let i = ref 0 in
let compare op n n' =
incr i;
let s = Printf.sprintf "%30s" (to_string n) in
let s' = Printf.sprintf "% 30.0f" (round n') in
if s <> s' then Printf.printf "%s: %s <> %s\n" op s s' in
List.iter (fun a -> List.iter (fun b ->
let n = of_string a and m = of_string b in
let n' = float_of_string a and m' = float_of_string b in
let a = add n m and a' = n' +. m' in
let s = sub n m and s' = n' -. m' in
let p = mult n m and p' = n' *. m' in
let q,r = try euclid n m with Division_by_zero -> zero,zero
and q',r' = eucl n' m' in
compare "+" a a';
compare "-" s s';
compare "*" p p';
compare "/" q q';
compare "%" r r') numbers) numbers;
Printf.printf "%i tests done\n" !i
|