1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: univ.ml,v 1.17.10.1 2004/07/16 19:30:28 herbelin Exp $ *)
(* Universes are stratified by a partial ordering $\ge$.
Let $\~{}$ be the associated equivalence. We also have a strict ordering
$>$ between equivalence classes, and we maintain that $>$ is acyclic,
and contained in $\ge$ in the sense that $[U]>[V]$ implies $U\ge V$.
At every moment, we have a finite number of universes, and we
maintain the ordering in the presence of assertions $U>V$ and $U\ge V$.
The equivalence $\~{}$ is represented by a tree structure, as in the
union-find algorithm. The assertions $>$ and $\ge$ are represented by
adjacency lists *)
open Pp
open Util
type universe_level =
{ u_mod : Names.dir_path;
u_num : int }
type universe =
| Variable of universe_level
| Max of universe_level list * universe_level list
module UniverseOrdered = struct
type t = universe_level
let compare = Pervasives.compare
end
let string_of_univ_level u =
Names.string_of_dirpath u.u_mod^"."^string_of_int u.u_num
let make_univ (m,n) = Variable { u_mod=m; u_num=n }
let string_of_univ = function
| Variable u -> string_of_univ_level u
| Max (gel,gtl) ->
"max("^
(String.concat ","
((List.map string_of_univ_level gel)@
(List.map (fun u -> "("^(string_of_univ_level u)^")+1") gtl)))^")"
let pr_uni_level u = str (string_of_univ_level u)
let pr_uni = function
| Variable u ->
pr_uni_level u
| Max (gel,gtl) ->
str "max(" ++
prlist_with_sep pr_coma pr_uni_level gel ++
if gel <> [] & gtl <> [] then pr_coma () else mt () ++
prlist_with_sep pr_coma
(fun x -> str "(" ++ pr_uni_level x ++ str ")+1") gtl ++
str ")"
(* Returns a fresh universe, juste above u. Does not create new universes
for Type_0 (the sort of Prop and Set).
Used to type the sort u. *)
let super = function
| Variable u ->
Max ([],[u])
| Max _ ->
anomaly ("Cannot take the successor of a non variable universes:\n"^
"you are probably typing a type already known to be the type\n"^
"of a user-provided term; if you really need this, please report")
(* returns the least upper bound of universes u and v. If they are not
constrained, then a new universe is created.
Used to type the products. *)
let sup u v =
match u,v with
| Variable u, Variable v -> Max ((if u = v then [u] else [u;v]),[])
| Variable u, Max (gel,gtl) -> Max (list_add_set u gel,gtl)
| Max (gel,gtl), Variable v -> Max (list_add_set v gel,gtl)
| Max (gel,gtl), Max (gel',gtl') ->
Max (list_union gel gel',list_union gtl gtl')
(* Comparison on this type is pointer equality *)
type canonical_arc =
{ univ: universe_level; gt: universe_level list; ge: universe_level list }
let terminal u = {univ=u; gt=[]; ge=[]}
(* A universe is either an alias for another one, or a canonical one,
for which we know the universes that are smaller *)
type univ_entry =
Canonical of canonical_arc
| Equiv of universe_level * universe_level
module UniverseMap = Map.Make(UniverseOrdered)
type universes = univ_entry UniverseMap.t
let enter_equiv_arc u v g =
UniverseMap.add u (Equiv(u,v)) g
let enter_arc ca g =
UniverseMap.add ca.univ (Canonical ca) g
let declare_univ u g =
if not (UniverseMap.mem u g) then
enter_arc (terminal u) g
else
g
(* When typing Prop and Set, there is no constraint on the level,
hence the definition of prop_univ *)
let initial_universes = UniverseMap.empty
let prop_univ = Max ([],[])
(* Every universe has a unique canonical arc representative *)
(* repr : universes -> universe -> canonical_arc *)
(* canonical representative : we follow the Equiv links *)
let repr g u =
let rec repr_rec u =
let a =
try UniverseMap.find u g
with Not_found -> anomalylabstrm "Univ.repr"
(str"Universe " ++ pr_uni_level u ++ str" undefined")
in
match a with
| Equiv(_,v) -> repr_rec v
| Canonical arc -> arc
in
repr_rec u
let can g = List.map (repr g)
(* transitive closure : we follow the Greater links *)
(* collect : canonical_arc -> canonical_arc list * canonical_arc list *)
(* collect u = (V,W) iff V={v canonical | u>v} W={w canonical | u>=w}-V *)
(* i.e. collect does the transitive closure of what is known about u *)
let collect g arcu =
let rec coll_rec gt ge = function
| [],[] -> (gt, list_subtractq ge gt)
| arcv::gt', ge' ->
if List.memq arcv gt then
coll_rec gt ge (gt',ge')
else
coll_rec (arcv::gt) ge ((can g (arcv.gt@arcv.ge))@gt',ge')
| [], arcw::ge' ->
if (List.memq arcw gt) or (List.memq arcw ge) then
coll_rec gt ge ([],ge')
else
coll_rec gt (arcw::ge) (can g arcw.gt, (can g arcw.ge)@ge')
in
coll_rec [] [] ([],[arcu])
(* reprgeq : canonical_arc -> canonical_arc list *)
(* All canonical arcv such that arcu>=arcc with arcv#arcu *)
let reprgeq g arcu =
let rec searchrec w = function
| [] -> w
| v :: vl ->
let arcv = repr g v in
if List.memq arcv w || arcu==arcv then
searchrec w vl
else
searchrec (arcv :: w) vl
in
searchrec [] arcu.ge
(* between : universe -> canonical_arc -> canonical_arc list *)
(* between u v = {w|u>=w>=v, w canonical} *)
(* between is the most costly operation *)
let between g u arcv =
(* good are all w | u >= w >= v *)
(* bad are all w | u >= w ~>= v *)
(* find good and bad nodes in {w | u >= w} *)
(* explore b u = (b or "u is good") *)
let rec explore ((good, bad, b) as input) arcu =
if List.memq arcu good then
(good, bad, true) (* b or true *)
else if List.memq arcu bad then
input (* (good, bad, b or false) *)
else
let childs = reprgeq g arcu in
(* are any children of u good ? *)
let good, bad, b_childs =
List.fold_left explore (good, bad, false) childs
in
if b_childs then
arcu::good, bad, true (* b or true *)
else
good, arcu::bad, b (* b or false *)
in
let good,_,_ = explore ([arcv],[],false) (repr g u) in
good
(* We assume compare(u,v) = GE with v canonical (see compare below).
In this case List.hd(between g u v) = repr u
Otherwise, between g u v = []
*)
type order = EQ | GT | GE | NGE
(* compare : universe -> universe -> order *)
let compare g u v =
let arcu = repr g u
and arcv = repr g v in
if arcu==arcv then
EQ
else
let (gt,geq) = collect g arcu in
if List.memq arcv gt then
GT
else if List.memq arcv geq then
GE
else
NGE
(* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ
compare(u,v) = GT or GE => compare(v,u) = NGE
compare(u,v) = NGE => compare(v,u) = NGE or GE or GT
Adding u>=v is consistent iff compare(v,u) # GT
and then it is redundant iff compare(u,v) # NGE
Adding u>v is consistent iff compare(v,u) = NGE
and then it is redundant iff compare(u,v) = GT *)
(* setgt : universe -> universe -> unit *)
(* forces u > v *)
let setgt g u v =
let arcu = repr g u in
enter_arc {arcu with gt=v::arcu.gt} g
(* checks that non-redondant *)
let setgt_if g u v = match compare g u v with
| GT -> g
| _ -> setgt g u v
(* setgeq : universe -> universe -> unit *)
(* forces u >= v *)
let setgeq g u v =
let arcu = repr g u in
enter_arc {arcu with ge=v::arcu.ge} g
(* checks that non-redondant *)
let setgeq_if g u v = match compare g u v with
| NGE -> setgeq g u v
| _ -> g
(* merge : universe -> universe -> unit *)
(* we assume compare(u,v) = GE *)
(* merge u v forces u ~ v with repr u as canonical repr *)
let merge g u v =
match between g u (repr g v) with
| arcu::v -> (* arcu is chosen as canonical and all others (v) are *)
(* redirected to it *)
let redirect (g,w,w') arcv =
let g' = enter_equiv_arc arcv.univ arcu.univ g in
(g',list_unionq arcv.gt w,arcv.ge@w')
in
let (g',w,w') = List.fold_left redirect (g,[],[]) v in
let g'' = List.fold_left (fun g -> setgt_if g arcu.univ) g' w in
let g''' = List.fold_left (fun g -> setgeq_if g arcu.univ) g'' w' in
g'''
| [] -> anomaly "Univ.between"
(* merge_disc : universe -> universe -> unit *)
(* we assume compare(u,v) = compare(v,u) = NGE *)
(* merge_disc u v forces u ~ v with repr u as canonical repr *)
let merge_disc g u v =
let arcu = repr g u in
let arcv = repr g v in
let g' = enter_equiv_arc arcv.univ arcu.univ g in
let g'' = List.fold_left (fun g -> setgt_if g arcu.univ) g' arcv.gt in
let g''' = List.fold_left (fun g -> setgeq_if g arcu.univ) g'' arcv.ge in
g'''
(* Universe inconsistency: error raised when trying to enforce a relation
that would create a cycle in the graph of universes. *)
exception UniverseInconsistency
let error_inconsistency () = raise UniverseInconsistency
(* enforcegeq : universe -> universe -> unit *)
(* enforcegeq u v will force u>=v if possible, will fail otherwise *)
let enforce_univ_geq u v g =
let g = declare_univ u g in
let g = declare_univ v g in
match compare g u v with
| NGE ->
(match compare g v u with
| GT -> error_inconsistency()
| GE -> merge g v u
| NGE -> setgeq g u v
| EQ -> anomaly "Univ.compare")
| _ -> g
(* enforceq : universe -> universe -> unit *)
(* enforceq u v will force u=v if possible, will fail otherwise *)
let enforce_univ_eq u v g =
let g = declare_univ u g in
let g = declare_univ v g in
match compare g u v with
| EQ -> g
| GT -> error_inconsistency()
| GE -> merge g u v
| NGE ->
(match compare g v u with
| GT -> error_inconsistency()
| GE -> merge g v u
| NGE -> merge_disc g u v
| EQ -> anomaly "Univ.compare")
(* enforcegt u v will force u>v if possible, will fail otherwise *)
let enforce_univ_gt u v g =
let g = declare_univ u g in
let g = declare_univ v g in
match compare g u v with
| GT -> g
| GE -> setgt g u v
| EQ -> error_inconsistency()
| NGE ->
(match compare g v u with
| NGE -> setgt g u v
| _ -> error_inconsistency())
(*
let enforce_univ_relation g = function
| Equiv (u,v) -> enforce_univ_eq u v g
| Canonical {univ=u; gt=gt; ge=ge} ->
let g' = List.fold_right (enforce_univ_gt u) gt g in
List.fold_right (enforce_univ_geq u) ge g'
*)
(* Merging 2 universe graphs *)
(*
let merge_universes sp u1 u2 =
UniverseMap.fold (fun _ a g -> enforce_univ_relation g a) u1 u2
*)
(* Constraints and sets of consrtaints. *)
type constraint_type = Gt | Geq | Eq
type univ_constraint = universe_level * constraint_type * universe_level
let enforce_constraint cst g =
match cst with
| (u,Gt,v) -> enforce_univ_gt u v g
| (u,Geq,v) -> enforce_univ_geq u v g
| (u,Eq,v) -> enforce_univ_eq u v g
module Constraint = Set.Make(
struct
type t = univ_constraint
let compare = Pervasives.compare
end)
type constraints = Constraint.t
type constraint_function =
universe -> universe -> constraints -> constraints
let enforce_gt u v c = Constraint.add (u,Gt,v) c
let enforce_geq u v c =
match u with
| Variable u -> (match v with
| Variable v -> Constraint.add (u,Geq,v) c
| Max (l1, l2) ->
let d = List.fold_right (fun v -> Constraint.add (u,Geq,v)) l1 c in
List.fold_right (fun v -> Constraint.add (u,Gt,v)) l2 d)
| Max _ -> anomaly "A universe bound can only be a variable"
let enforce_eq u v c =
match (u,v) with
| Variable u, Variable v -> Constraint.add (u,Eq,v) c
| _ -> anomaly "A universe comparison can only happen between variables"
let merge_constraints c g =
Constraint.fold enforce_constraint c g
(* Pretty-printing *)
let num_universes g =
UniverseMap.fold (fun _ _ -> succ) g 0
let num_edges g =
let reln_len = function
| Equiv _ -> 1
| Canonical {gt=gt;ge=ge} -> List.length gt + List.length ge
in
UniverseMap.fold (fun _ a n -> n + (reln_len a)) g 0
let pr_arc = function
| Canonical {univ=u; gt=[]; ge=[]} ->
mt ()
| Canonical {univ=u; gt=gt; ge=ge} ->
pr_uni_level u ++ str " " ++
v 0
(prlist_with_sep pr_spc (fun v -> str "> " ++ pr_uni_level v) gt ++
prlist_with_sep pr_spc (fun v -> str ">= " ++ pr_uni_level v) ge) ++
fnl ()
| Equiv (u,v) ->
pr_uni_level u ++ str " = " ++ pr_uni_level v ++ fnl ()
let pr_universes g =
let graph = UniverseMap.fold (fun k a l -> (k,a)::l) g [] in
prlist (function (_,a) -> pr_arc a) graph
(* Dumping constrains to a file *)
let dump_universes output g =
let dump_arc _ = function
| Canonical {univ=u; gt=gt; ge=ge} ->
let u_str = string_of_univ_level u in
List.iter
(fun v ->
Printf.fprintf output "%s > %s ;\n" u_str
(string_of_univ_level v))
gt;
List.iter
(fun v ->
Printf.fprintf output "%s >= %s ;\n" u_str
(string_of_univ_level v))
ge
| Equiv (u,v) ->
Printf.fprintf output "%s = %s ;\n"
(string_of_univ_level u) (string_of_univ_level v)
in
UniverseMap.iter dump_arc g
module Huniv =
Hashcons.Make(
struct
type t = universe
type u = Names.dir_path -> Names.dir_path
let hash_aux hdir u = { u with u_mod=hdir u.u_mod }
let hash_sub hdir = function
| Variable u -> Variable (hash_aux hdir u)
| Max (gel,gtl) ->
Max (List.map (hash_aux hdir) gel, List.map (hash_aux hdir) gtl)
let equal u v =
match u, v with
| Variable u, Variable v -> u == v
| Max (gel,gtl), Max (gel',gtl') ->
(List.for_all2 (==) gel gel') && (List.for_all2 (==) gtl gtl')
| _ -> false
let hash = Hashtbl.hash
end)
let hcons1_univ u =
let _,hdir,_,_,_ = Names.hcons_names() in
Hashcons.simple_hcons Huniv.f hdir u
|