1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* File initially created by Gérard Huet and Thierry Coquand in 1984 *)
(* Extension to inductive constructions by Christine Paulin for Coq V5.6 *)
(* Extension to mutual inductive constructions by Christine Paulin for
Coq V5.10.2 *)
(* Extension to co-inductive constructions by Eduardo Gimenez *)
(* Optimization of substitution functions by Chet Murthy *)
(* Optimization of lifting functions by Bruno Barras, Mar 1997 *)
(* Hash-consing by Bruno Barras in Feb 1998 *)
(* Restructuration of Coq of the type-checking kernel by Jean-Christophe
Filliâtre, 1999 *)
(* Abstraction of the syntax of terms and iterators by Hugo Herbelin, 2000 *)
(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)
(* This file defines the internal syntax of the Calculus of
Inductive Constructions (CIC) terms together with constructors,
destructors, iterators and basic functions *)
open Util
open Pp
open Names
open Univ
open Esubst
type existential_key = int
type metavariable = int
(* This defines the strategy to use for verifiying a Cast *)
(* Warning: REVERTcast is not exported to vo-files; as of r14492, it has to *)
(* come after the vo-exported cast_kind so as to be compatible with coqchk *)
type cast_kind = VMcast | DEFAULTcast | REVERTcast
(* This defines Cases annotations *)
type case_style = LetStyle | IfStyle | LetPatternStyle | MatchStyle | RegularStyle
type case_printing =
{ ind_nargs : int; (* length of the arity of the inductive type *)
style : case_style }
type case_info =
{ ci_ind : inductive;
ci_npar : int;
ci_cstr_ndecls : int array; (* number of pattern vars of each constructor *)
ci_pp_info : case_printing (* not interpreted by the kernel *)
}
(* Sorts. *)
type contents = Pos | Null
type sorts =
| Prop of contents (* proposition types *)
| Type of universe
let prop_sort = Prop Null
let set_sort = Prop Pos
let type1_sort = Type type1_univ
type sorts_family = InProp | InSet | InType
let family_of_sort = function
| Prop Null -> InProp
| Prop Pos -> InSet
| Type _ -> InType
(********************************************************************)
(* Constructions as implemented *)
(********************************************************************)
(* [constr array] is an instance matching definitional [named_context] in
the same order (i.e. last argument first) *)
type 'constr pexistential = existential_key * 'constr array
type ('constr, 'types) prec_declaration =
name array * 'types array * 'constr array
type ('constr, 'types) pfixpoint =
(int array * int) * ('constr, 'types) prec_declaration
type ('constr, 'types) pcofixpoint =
int * ('constr, 'types) prec_declaration
(* [Var] is used for named variables and [Rel] for variables as
de Bruijn indices. *)
type ('constr, 'types) kind_of_term =
| Rel of int
| Var of identifier
| Meta of metavariable
| Evar of 'constr pexistential
| Sort of sorts
| Cast of 'constr * cast_kind * 'types
| Prod of name * 'types * 'types
| Lambda of name * 'types * 'constr
| LetIn of name * 'constr * 'types * 'constr
| App of 'constr * 'constr array
| Const of constant
| Ind of inductive
| Construct of constructor
| Case of case_info * 'constr * 'constr * 'constr array
| Fix of ('constr, 'types) pfixpoint
| CoFix of ('constr, 'types) pcofixpoint
(* constr is the fixpoint of the previous type. Requires option
-rectypes of the Caml compiler to be set *)
type constr = (constr,constr) kind_of_term
type existential = existential_key * constr array
type rec_declaration = name array * constr array * constr array
type fixpoint = (int array * int) * rec_declaration
type cofixpoint = int * rec_declaration
(*********************)
(* Term constructors *)
(*********************)
(* Constructs a DeBrujin index with number n *)
let rels =
[|Rel 1;Rel 2;Rel 3;Rel 4;Rel 5;Rel 6;Rel 7; Rel 8;
Rel 9;Rel 10;Rel 11;Rel 12;Rel 13;Rel 14;Rel 15; Rel 16|]
let mkRel n = if 0<n & n<=16 then rels.(n-1) else Rel n
(* Construct a type *)
let mkProp = Sort prop_sort
let mkSet = Sort set_sort
let mkType u = Sort (Type u)
let mkSort = function
| Prop Null -> mkProp (* Easy sharing *)
| Prop Pos -> mkSet
| s -> Sort s
(* Constructs the term t1::t2, i.e. the term t1 casted with the type t2 *)
(* (that means t2 is declared as the type of t1) *)
let mkCast (t1,k2,t2) =
match t1 with
| Cast (c,k1, _) when k1 = VMcast & k1 = k2 -> Cast (c,k1,t2)
| _ -> Cast (t1,k2,t2)
(* Constructs the product (x:t1)t2 *)
let mkProd (x,t1,t2) = Prod (x,t1,t2)
(* Constructs the abstraction [x:t1]t2 *)
let mkLambda (x,t1,t2) = Lambda (x,t1,t2)
(* Constructs [x=c_1:t]c_2 *)
let mkLetIn (x,c1,t,c2) = LetIn (x,c1,t,c2)
(* If lt = [t1; ...; tn], constructs the application (t1 ... tn) *)
(* We ensure applicative terms have at least one argument and the
function is not itself an applicative term *)
let mkApp (f, a) =
if Array.length a = 0 then f else
match f with
| App (g, cl) -> App (g, Array.append cl a)
| _ -> App (f, a)
(* Constructs a constant *)
let mkConst c = Const c
(* Constructs an existential variable *)
let mkEvar e = Evar e
(* Constructs the ith (co)inductive type of the block named kn *)
let mkInd m = Ind m
(* Constructs the jth constructor of the ith (co)inductive type of the
block named kn. The array of terms correspond to the variables
introduced in the section *)
let mkConstruct c = Construct c
(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
let mkCase (ci, p, c, ac) = Case (ci, p, c, ac)
(* If recindxs = [|i1,...in|]
funnames = [|f1,...fn|]
typarray = [|t1,...tn|]
bodies = [|b1,...bn|]
then
mkFix ((recindxs,i),(funnames,typarray,bodies))
constructs the ith function of the block
Fixpoint f1 [ctx1] : t1 := b1
with f2 [ctx2] : t2 := b2
...
with fn [ctxn] : tn := bn.
where the lenght of the jth context is ij.
*)
let mkFix fix = Fix fix
(* If funnames = [|f1,...fn|]
typarray = [|t1,...tn|]
bodies = [|b1,...bn|]
then
mkCoFix (i,(funnames,typsarray,bodies))
constructs the ith function of the block
CoFixpoint f1 : t1 := b1
with f2 : t2 := b2
...
with fn : tn := bn.
*)
let mkCoFix cofix= CoFix cofix
(* Constructs an existential variable named "?n" *)
let mkMeta n = Meta n
(* Constructs a Variable named id *)
let mkVar id = Var id
(************************************************************************)
(* kind_of_term = constructions as seen by the user *)
(************************************************************************)
(* User view of [constr]. For [App], it is ensured there is at
least one argument and the function is not itself an applicative
term *)
let kind_of_term c = c
(* Experimental, used in Presburger contrib *)
type ('constr, 'types) kind_of_type =
| SortType of sorts
| CastType of 'types * 'types
| ProdType of name * 'types * 'types
| LetInType of name * 'constr * 'types * 'types
| AtomicType of 'constr * 'constr array
let kind_of_type = function
| Sort s -> SortType s
| Cast (c,_,t) -> CastType (c, t)
| Prod (na,t,c) -> ProdType (na, t, c)
| LetIn (na,b,t,c) -> LetInType (na, b, t, c)
| App (c,l) -> AtomicType (c, l)
| (Rel _ | Meta _ | Var _ | Evar _ | Const _ | Case _ | Fix _ | CoFix _ | Ind _ as c)
-> AtomicType (c,[||])
| (Lambda _ | Construct _) -> failwith "Not a type"
(**********************************************************************)
(* Non primitive term destructors *)
(**********************************************************************)
(* Destructor operations : partial functions
Raise invalid_arg "dest*" if the const has not the expected form *)
(* Destructs a DeBrujin index *)
let destRel c = match kind_of_term c with
| Rel n -> n
| _ -> invalid_arg "destRel"
(* Destructs an existential variable *)
let destMeta c = match kind_of_term c with
| Meta n -> n
| _ -> invalid_arg "destMeta"
let isMeta c = match kind_of_term c with Meta _ -> true | _ -> false
(* Destructs a variable *)
let destVar c = match kind_of_term c with
| Var id -> id
| _ -> invalid_arg "destVar"
(* Destructs a type *)
let isSort c = match kind_of_term c with
| Sort s -> true
| _ -> false
let destSort c = match kind_of_term c with
| Sort s -> s
| _ -> invalid_arg "destSort"
let rec isprop c = match kind_of_term c with
| Sort (Prop _) -> true
| Cast (c,_,_) -> isprop c
| _ -> false
let rec is_Prop c = match kind_of_term c with
| Sort (Prop Null) -> true
| Cast (c,_,_) -> is_Prop c
| _ -> false
let rec is_Set c = match kind_of_term c with
| Sort (Prop Pos) -> true
| Cast (c,_,_) -> is_Set c
| _ -> false
let rec is_Type c = match kind_of_term c with
| Sort (Type _) -> true
| Cast (c,_,_) -> is_Type c
| _ -> false
let is_small = function
| Prop _ -> true
| _ -> false
let iskind c = isprop c or is_Type c
(* Tests if an evar *)
let isEvar c = match kind_of_term c with Evar _ -> true | _ -> false
let isEvar_or_Meta c = match kind_of_term c with
| Evar _ | Meta _ -> true
| _ -> false
(* Destructs a casted term *)
let destCast c = match kind_of_term c with
| Cast (t1,k,t2) -> (t1,k,t2)
| _ -> invalid_arg "destCast"
let isCast c = match kind_of_term c with Cast _ -> true | _ -> false
(* Tests if a de Bruijn index *)
let isRel c = match kind_of_term c with Rel _ -> true | _ -> false
(* Tests if a variable *)
let isVar c = match kind_of_term c with Var _ -> true | _ -> false
let isVarId id c = match kind_of_term c with Var id' -> id = id' | _ -> false
(* Tests if an inductive *)
let isInd c = match kind_of_term c with Ind _ -> true | _ -> false
(* Destructs the product (x:t1)t2 *)
let destProd c = match kind_of_term c with
| Prod (x,t1,t2) -> (x,t1,t2)
| _ -> invalid_arg "destProd"
let isProd c = match kind_of_term c with | Prod _ -> true | _ -> false
(* Destructs the abstraction [x:t1]t2 *)
let destLambda c = match kind_of_term c with
| Lambda (x,t1,t2) -> (x,t1,t2)
| _ -> invalid_arg "destLambda"
let isLambda c = match kind_of_term c with | Lambda _ -> true | _ -> false
(* Destructs the let [x:=b:t1]t2 *)
let destLetIn c = match kind_of_term c with
| LetIn (x,b,t1,t2) -> (x,b,t1,t2)
| _ -> invalid_arg "destLetIn"
let isLetIn c = match kind_of_term c with LetIn _ -> true | _ -> false
(* Destructs an application *)
let destApp c = match kind_of_term c with
| App (f,a) -> (f, a)
| _ -> invalid_arg "destApplication"
let destApplication = destApp
let isApp c = match kind_of_term c with App _ -> true | _ -> false
(* Destructs a constant *)
let destConst c = match kind_of_term c with
| Const kn -> kn
| _ -> invalid_arg "destConst"
let isConst c = match kind_of_term c with Const _ -> true | _ -> false
(* Destructs an existential variable *)
let destEvar c = match kind_of_term c with
| Evar (kn, a as r) -> r
| _ -> invalid_arg "destEvar"
(* Destructs a (co)inductive type named kn *)
let destInd c = match kind_of_term c with
| Ind (kn, a as r) -> r
| _ -> invalid_arg "destInd"
(* Destructs a constructor *)
let destConstruct c = match kind_of_term c with
| Construct (kn, a as r) -> r
| _ -> invalid_arg "dest"
let isConstruct c = match kind_of_term c with Construct _ -> true | _ -> false
(* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *)
let destCase c = match kind_of_term c with
| Case (ci,p,c,v) -> (ci,p,c,v)
| _ -> anomaly "destCase"
let isCase c = match kind_of_term c with Case _ -> true | _ -> false
let destFix c = match kind_of_term c with
| Fix fix -> fix
| _ -> invalid_arg "destFix"
let isFix c = match kind_of_term c with Fix _ -> true | _ -> false
let destCoFix c = match kind_of_term c with
| CoFix cofix -> cofix
| _ -> invalid_arg "destCoFix"
let isCoFix c = match kind_of_term c with CoFix _ -> true | _ -> false
(******************************************************************)
(* Cast management *)
(******************************************************************)
let rec strip_outer_cast c = match kind_of_term c with
| Cast (c,_,_) -> strip_outer_cast c
| _ -> c
(* Fonction spéciale qui laisse les cast clés sous les Fix ou les Case *)
let under_outer_cast f c = match kind_of_term c with
| Cast (b,k,t) -> mkCast (f b, k, f t)
| _ -> f c
let rec under_casts f c = match kind_of_term c with
| Cast (c,k,t) -> mkCast (under_casts f c, k, t)
| _ -> f c
(******************************************************************)
(* Flattening and unflattening of embedded applications and casts *)
(******************************************************************)
(* flattens application lists throwing casts in-between *)
let rec collapse_appl c = match kind_of_term c with
| App (f,cl) ->
let rec collapse_rec f cl2 =
match kind_of_term (strip_outer_cast f) with
| App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
| _ -> mkApp (f,cl2)
in
collapse_rec f cl
| _ -> c
let decompose_app c =
match kind_of_term c with
| App (f,cl) -> (f, Array.to_list cl)
| _ -> (c,[])
(****************************************************************************)
(* Functions to recur through subterms *)
(****************************************************************************)
(* [fold_constr f acc c] folds [f] on the immediate subterms of [c]
starting from [acc] and proceeding from left to right according to
the usual representation of the constructions; it is not recursive *)
let fold_constr f acc c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> acc
| Cast (c,_,t) -> f (f acc c) t
| Prod (_,t,c) -> f (f acc t) c
| Lambda (_,t,c) -> f (f acc t) c
| LetIn (_,b,t,c) -> f (f (f acc b) t) c
| App (c,l) -> Array.fold_left f (f acc c) l
| Evar (_,l) -> Array.fold_left f acc l
| Case (_,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl
| Fix (_,(lna,tl,bl)) ->
let fd = array_map3 (fun na t b -> (na,t,b)) lna tl bl in
Array.fold_left (fun acc (na,t,b) -> f (f acc t) b) acc fd
| CoFix (_,(lna,tl,bl)) ->
let fd = array_map3 (fun na t b -> (na,t,b)) lna tl bl in
Array.fold_left (fun acc (na,t,b) -> f (f acc t) b) acc fd
(* [iter_constr f c] iters [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
let iter_constr f c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> ()
| Cast (c,_,t) -> f c; f t
| Prod (_,t,c) -> f t; f c
| Lambda (_,t,c) -> f t; f c
| LetIn (_,b,t,c) -> f b; f t; f c
| App (c,l) -> f c; Array.iter f l
| Evar (_,l) -> Array.iter f l
| Case (_,p,c,bl) -> f p; f c; Array.iter f bl
| Fix (_,(_,tl,bl)) -> Array.iter f tl; Array.iter f bl
| CoFix (_,(_,tl,bl)) -> Array.iter f tl; Array.iter f bl
(* [iter_constr_with_binders g f n c] iters [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
let iter_constr_with_binders g f n c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> ()
| Cast (c,_,t) -> f n c; f n t
| Prod (_,t,c) -> f n t; f (g n) c
| Lambda (_,t,c) -> f n t; f (g n) c
| LetIn (_,b,t,c) -> f n b; f n t; f (g n) c
| App (c,l) -> f n c; Array.iter (f n) l
| Evar (_,l) -> Array.iter (f n) l
| Case (_,p,c,bl) -> f n p; f n c; Array.iter (f n) bl
| Fix (_,(_,tl,bl)) ->
Array.iter (f n) tl;
Array.iter (f (iterate g (Array.length tl) n)) bl
| CoFix (_,(_,tl,bl)) ->
Array.iter (f n) tl;
Array.iter (f (iterate g (Array.length tl) n)) bl
(* [map_constr f c] maps [f] on the immediate subterms of [c]; it is
not recursive and the order with which subterms are processed is
not specified *)
let map_constr f c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (c,k,t) -> mkCast (f c, k, f t)
| Prod (na,t,c) -> mkProd (na, f t, f c)
| Lambda (na,t,c) -> mkLambda (na, f t, f c)
| LetIn (na,b,t,c) -> mkLetIn (na, f b, f t, f c)
| App (c,l) -> mkApp (f c, Array.map f l)
| Evar (e,l) -> mkEvar (e, Array.map f l)
| Case (ci,p,c,bl) -> mkCase (ci, f p, f c, Array.map f bl)
| Fix (ln,(lna,tl,bl)) ->
mkFix (ln,(lna,Array.map f tl,Array.map f bl))
| CoFix(ln,(lna,tl,bl)) ->
mkCoFix (ln,(lna,Array.map f tl,Array.map f bl))
(* [map_constr_with_binders g f n c] maps [f n] on the immediate
subterms of [c]; it carries an extra data [n] (typically a lift
index) which is processed by [g] (which typically add 1 to [n]) at
each binder traversal; it is not recursive and the order with which
subterms are processed is not specified *)
let map_constr_with_binders g f l c = match kind_of_term c with
| (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _
| Construct _) -> c
| Cast (c,k,t) -> mkCast (f l c, k, f l t)
| Prod (na,t,c) -> mkProd (na, f l t, f (g l) c)
| Lambda (na,t,c) -> mkLambda (na, f l t, f (g l) c)
| LetIn (na,b,t,c) -> mkLetIn (na, f l b, f l t, f (g l) c)
| App (c,al) -> mkApp (f l c, Array.map (f l) al)
| Evar (e,al) -> mkEvar (e, Array.map (f l) al)
| Case (ci,p,c,bl) -> mkCase (ci, f l p, f l c, Array.map (f l) bl)
| Fix (ln,(lna,tl,bl)) ->
let l' = iterate g (Array.length tl) l in
mkFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
| CoFix(ln,(lna,tl,bl)) ->
let l' = iterate g (Array.length tl) l in
mkCoFix (ln,(lna,Array.map (f l) tl,Array.map (f l') bl))
(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare
the immediate subterms of [c1] of [c2] if needed; Cast's,
application associativity, binders name and Cases annotations are
not taken into account *)
let compare_constr f t1 t2 =
match kind_of_term t1, kind_of_term t2 with
| Rel n1, Rel n2 -> n1 = n2
| Meta m1, Meta m2 -> m1 = m2
| Var id1, Var id2 -> id1 = id2
| Sort s1, Sort s2 -> s1 = s2
| Cast (c1,_,_), _ -> f c1 t2
| _, Cast (c2,_,_) -> f t1 c2
| Prod (_,t1,c1), Prod (_,t2,c2) -> f t1 t2 & f c1 c2
| Lambda (_,t1,c1), Lambda (_,t2,c2) -> f t1 t2 & f c1 c2
| LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> f b1 b2 & f t1 t2 & f c1 c2
| App (c1,l1), _ when isCast c1 -> f (mkApp (pi1 (destCast c1),l1)) t2
| _, App (c2,l2) when isCast c2 -> f t1 (mkApp (pi1 (destCast c2),l2))
| App (c1,l1), App (c2,l2) ->
Array.length l1 = Array.length l2 &&
f c1 c2 && array_for_all2 f l1 l2
| Evar (e1,l1), Evar (e2,l2) -> e1 = e2 & array_for_all2 f l1 l2
| Const c1, Const c2 -> eq_constant c1 c2
| Ind c1, Ind c2 -> eq_ind c1 c2
| Construct c1, Construct c2 -> eq_constructor c1 c2
| Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
f p1 p2 & f c1 c2 & array_for_all2 f bl1 bl2
| Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) ->
ln1 = ln2 & array_for_all2 f tl1 tl2 & array_for_all2 f bl1 bl2
| CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
ln1 = ln2 & array_for_all2 f tl1 tl2 & array_for_all2 f bl1 bl2
| _ -> false
(*******************************)
(* alpha conversion functions *)
(*******************************)
(* alpha conversion : ignore print names and casts *)
let rec eq_constr m n =
(m==n) or
compare_constr eq_constr m n
let eq_constr m n = eq_constr m n (* to avoid tracing a recursive fun *)
let constr_ord_int f t1 t2 =
let (=?) f g i1 i2 j1 j2=
let c=f i1 i2 in
if c=0 then g j1 j2 else c in
let (==?) fg h i1 i2 j1 j2 k1 k2=
let c=fg i1 i2 j1 j2 in
if c=0 then h k1 k2 else c in
match kind_of_term t1, kind_of_term t2 with
| Rel n1, Rel n2 -> n1 - n2
| Meta m1, Meta m2 -> m1 - m2
| Var id1, Var id2 -> id_ord id1 id2
| Sort s1, Sort s2 -> Pervasives.compare s1 s2
| Cast (c1,_,_), _ -> f c1 t2
| _, Cast (c2,_,_) -> f t1 c2
| Prod (_,t1,c1), Prod (_,t2,c2)
| Lambda (_,t1,c1), Lambda (_,t2,c2) ->
(f =? f) t1 t2 c1 c2
| LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) ->
((f =? f) ==? f) b1 b2 t1 t2 c1 c2
| App (c1,l1), _ when isCast c1 -> f (mkApp (pi1 (destCast c1),l1)) t2
| _, App (c2,l2) when isCast c2 -> f t1 (mkApp (pi1 (destCast c2),l2))
| App (c1,l1), App (c2,l2) -> (f =? (array_compare f)) c1 c2 l1 l2
| Evar (e1,l1), Evar (e2,l2) ->
((-) =? (array_compare f)) e1 e2 l1 l2
| Const c1, Const c2 -> kn_ord (canonical_con c1) (canonical_con c2)
| Ind (spx, ix), Ind (spy, iy) ->
let c = ix - iy in if c = 0 then kn_ord (canonical_mind spx) (canonical_mind spy) else c
| Construct ((spx, ix), jx), Construct ((spy, iy), jy) ->
let c = jx - jy in if c = 0 then
(let c = ix - iy in if c = 0 then kn_ord (canonical_mind spx) (canonical_mind spy) else c)
else c
| Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
((f =? f) ==? (array_compare f)) p1 p2 c1 c2 bl1 bl2
| Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) ->
((Pervasives.compare =? (array_compare f)) ==? (array_compare f))
ln1 ln2 tl1 tl2 bl1 bl2
| CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
((Pervasives.compare =? (array_compare f)) ==? (array_compare f))
ln1 ln2 tl1 tl2 bl1 bl2
| t1, t2 -> Pervasives.compare t1 t2
let rec constr_ord m n=
constr_ord_int constr_ord m n
(***************************************************************************)
(* Type of assumptions *)
(***************************************************************************)
type types = constr
type strategy = types option
type named_declaration = identifier * constr option * types
type rel_declaration = name * constr option * types
let map_named_declaration f (id, v, ty) = (id, Option.map f v, f ty)
let map_rel_declaration = map_named_declaration
let fold_named_declaration f (_, v, ty) a = f ty (Option.fold_right f v a)
let fold_rel_declaration = fold_named_declaration
let exists_named_declaration f (_, v, ty) = Option.cata f false v || f ty
let exists_rel_declaration f (_, v, ty) = Option.cata f false v || f ty
let for_all_named_declaration f (_, v, ty) = Option.cata f true v && f ty
let for_all_rel_declaration f (_, v, ty) = Option.cata f true v && f ty
let eq_named_declaration (i1, c1, t1) (i2, c2, t2) =
id_ord i1 i2 = 0 && Option.Misc.compare eq_constr c1 c2 && eq_constr t1 t2
let eq_rel_declaration (n1, c1, t1) (n2, c2, t2) =
n1 = n2 && Option.Misc.compare eq_constr c1 c2 && eq_constr t1 t2
(***************************************************************************)
(* Type of local contexts (telescopes) *)
(***************************************************************************)
(*s Signatures of ordered optionally named variables, intended to be
accessed by de Bruijn indices (to represent bound variables) *)
type rel_context = rel_declaration list
let empty_rel_context = []
let add_rel_decl d ctxt = d::ctxt
let rec lookup_rel n sign =
match n, sign with
| 1, decl :: _ -> decl
| n, _ :: sign -> lookup_rel (n-1) sign
| _, [] -> raise Not_found
let rel_context_length = List.length
let rel_context_nhyps hyps =
let rec nhyps acc = function
| [] -> acc
| (_,None,_)::hyps -> nhyps (1+acc) hyps
| (_,Some _,_)::hyps -> nhyps acc hyps in
nhyps 0 hyps
(****************************************************************************)
(* Functions for dealing with constr terms *)
(****************************************************************************)
(*********************)
(* Occurring *)
(*********************)
exception LocalOccur
(* (closedn n M) raises FreeVar if a variable of height greater than n
occurs in M, returns () otherwise *)
let closedn n c =
let rec closed_rec n c = match kind_of_term c with
| Rel m -> if m>n then raise LocalOccur
| _ -> iter_constr_with_binders succ closed_rec n c
in
try closed_rec n c; true with LocalOccur -> false
(* [closed0 M] is true iff [M] is a (deBruijn) closed term *)
let closed0 = closedn 0
(* (noccurn n M) returns true iff (Rel n) does NOT occur in term M *)
let noccurn n term =
let rec occur_rec n c = match kind_of_term c with
| Rel m -> if m = n then raise LocalOccur
| _ -> iter_constr_with_binders succ occur_rec n c
in
try occur_rec n term; true with LocalOccur -> false
(* (noccur_between n m M) returns true iff (Rel p) does NOT occur in term M
for n <= p < n+m *)
let noccur_between n m term =
let rec occur_rec n c = match kind_of_term c with
| Rel(p) -> if n<=p && p<n+m then raise LocalOccur
| _ -> iter_constr_with_binders succ occur_rec n c
in
try occur_rec n term; true with LocalOccur -> false
(* Checking function for terms containing existential variables.
The function [noccur_with_meta] considers the fact that
each existential variable (as well as each isevar)
in the term appears applied to its local context,
which may contain the CoFix variables. These occurrences of CoFix variables
are not considered *)
let noccur_with_meta n m term =
let rec occur_rec n c = match kind_of_term c with
| Rel p -> if n<=p & p<n+m then raise LocalOccur
| App(f,cl) ->
(match kind_of_term f with
| Cast (c,_,_) when isMeta c -> ()
| Meta _ -> ()
| _ -> iter_constr_with_binders succ occur_rec n c)
| Evar (_, _) -> ()
| _ -> iter_constr_with_binders succ occur_rec n c
in
try (occur_rec n term; true) with LocalOccur -> false
(*********************)
(* Lifting *)
(*********************)
(* The generic lifting function *)
let rec exliftn el c = match kind_of_term c with
| Rel i -> mkRel(reloc_rel i el)
| _ -> map_constr_with_binders el_lift exliftn el c
(* Lifting the binding depth across k bindings *)
let liftn n k =
match el_liftn (pred k) (el_shft n el_id) with
| ELID -> (fun c -> c)
| el -> exliftn el
let lift n = liftn n 1
(*********************)
(* Substituting *)
(*********************)
(* (subst1 M c) substitutes M for Rel(1) in c
we generalise it to (substl [M1,...,Mn] c) which substitutes in parallel
M1,...,Mn for respectively Rel(1),...,Rel(n) in c *)
(* 1st : general case *)
type info = Closed | Open | Unknown
type 'a substituend = { mutable sinfo: info; sit: 'a }
let rec lift_substituend depth s =
match s.sinfo with
| Closed -> s.sit
| Open -> lift depth s.sit
| Unknown ->
s.sinfo <- if closed0 s.sit then Closed else Open;
lift_substituend depth s
let make_substituend c = { sinfo=Unknown; sit=c }
let substn_many lamv n c =
let lv = Array.length lamv in
if lv = 0 then c
else
let rec substrec depth c = match kind_of_term c with
| Rel k ->
if k<=depth then c
else if k-depth <= lv then lift_substituend depth lamv.(k-depth-1)
else mkRel (k-lv)
| _ -> map_constr_with_binders succ substrec depth c in
substrec n c
(*
let substkey = Profile.declare_profile "substn_many";;
let substn_many lamv n c = Profile.profile3 substkey substn_many lamv n c;;
*)
let substnl laml n =
substn_many (Array.map make_substituend (Array.of_list laml)) n
let substl laml = substnl laml 0
let subst1 lam = substl [lam]
let substnl_decl laml k = map_rel_declaration (substnl laml k)
let substl_decl laml = substnl_decl laml 0
let subst1_decl lam = substl_decl [lam]
let substnl_named laml k = map_named_declaration (substnl laml k)
let substl_named_decl = substl_decl
let subst1_named_decl = subst1_decl
(* (thin_val sigma) removes identity substitutions from sigma *)
let rec thin_val = function
| [] -> []
| (((id,{ sit = v }) as s)::tl) when isVar v ->
if id = destVar v then thin_val tl else s::(thin_val tl)
| h::tl -> h::(thin_val tl)
(* (replace_vars sigma M) applies substitution sigma to term M *)
let replace_vars var_alist =
let var_alist =
List.map (fun (str,c) -> (str,make_substituend c)) var_alist in
let var_alist = thin_val var_alist in
let rec substrec n c = match kind_of_term c with
| Var x ->
(try lift_substituend n (List.assoc x var_alist)
with Not_found -> c)
| _ -> map_constr_with_binders succ substrec n c
in
if var_alist = [] then (function x -> x) else substrec 0
(*
let repvarkey = Profile.declare_profile "replace_vars";;
let replace_vars vl c = Profile.profile2 repvarkey replace_vars vl c ;;
*)
(* (subst_var str t) substitute (VAR str) by (Rel 1) in t *)
let subst_var str = replace_vars [(str, mkRel 1)]
(* (subst_vars [id1;...;idn] t) substitute (VAR idj) by (Rel j) in t *)
let substn_vars p vars =
let _,subst =
List.fold_left (fun (n,l) var -> ((n+1),(var,mkRel n)::l)) (p,[]) vars
in replace_vars (List.rev subst)
let subst_vars = substn_vars 1
(***************************)
(* Other term constructors *)
(***************************)
let mkNamedProd id typ c = mkProd (Name id, typ, subst_var id c)
let mkNamedLambda id typ c = mkLambda (Name id, typ, subst_var id c)
let mkNamedLetIn id c1 t c2 = mkLetIn (Name id, c1, t, subst_var id c2)
(* Constructs either [(x:t)c] or [[x=b:t]c] *)
let mkProd_or_LetIn (na,body,t) c =
match body with
| None -> mkProd (na, t, c)
| Some b -> mkLetIn (na, b, t, c)
let mkNamedProd_or_LetIn (id,body,t) c =
match body with
| None -> mkNamedProd id t c
| Some b -> mkNamedLetIn id b t c
(* Constructs either [(x:t)c] or [c] where [x] is replaced by [b] *)
let mkProd_wo_LetIn (na,body,t) c =
match body with
| None -> mkProd (na, t, c)
| Some b -> subst1 b c
let mkNamedProd_wo_LetIn (id,body,t) c =
match body with
| None -> mkNamedProd id t c
| Some b -> subst1 b (subst_var id c)
(* non-dependent product t1 -> t2 *)
let mkArrow t1 t2 = mkProd (Anonymous, t1, t2)
(* Constructs either [[x:t]c] or [[x=b:t]c] *)
let mkLambda_or_LetIn (na,body,t) c =
match body with
| None -> mkLambda (na, t, c)
| Some b -> mkLetIn (na, b, t, c)
let mkNamedLambda_or_LetIn (id,body,t) c =
match body with
| None -> mkNamedLambda id t c
| Some b -> mkNamedLetIn id b t c
(* prodn n [xn:Tn;..;x1:T1;Gamma] b = (x1:T1)..(xn:Tn)b *)
let prodn n env b =
let rec prodrec = function
| (0, env, b) -> b
| (n, ((v,t)::l), b) -> prodrec (n-1, l, mkProd (v,t,b))
| _ -> assert false
in
prodrec (n,env,b)
(* compose_prod [xn:Tn;..;x1:T1] b = (x1:T1)..(xn:Tn)b *)
let compose_prod l b = prodn (List.length l) l b
(* lamn n [xn:Tn;..;x1:T1;Gamma] b = [x1:T1]..[xn:Tn]b *)
let lamn n env b =
let rec lamrec = function
| (0, env, b) -> b
| (n, ((v,t)::l), b) -> lamrec (n-1, l, mkLambda (v,t,b))
| _ -> assert false
in
lamrec (n,env,b)
(* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *)
let compose_lam l b = lamn (List.length l) l b
let applist (f,l) = mkApp (f, Array.of_list l)
let applistc f l = mkApp (f, Array.of_list l)
let appvect = mkApp
let appvectc f l = mkApp (f,l)
(* to_lambda n (x1:T1)...(xn:Tn)T =
* [x1:T1]...[xn:Tn]T *)
let rec to_lambda n prod =
if n = 0 then
prod
else
match kind_of_term prod with
| Prod (na,ty,bd) -> mkLambda (na,ty,to_lambda (n-1) bd)
| Cast (c,_,_) -> to_lambda n c
| _ -> errorlabstrm "to_lambda" (mt ())
let rec to_prod n lam =
if n=0 then
lam
else
match kind_of_term lam with
| Lambda (na,ty,bd) -> mkProd (na,ty,to_prod (n-1) bd)
| Cast (c,_,_) -> to_prod n c
| _ -> errorlabstrm "to_prod" (mt ())
(* pseudo-reduction rule:
* [prod_app s (Prod(_,B)) N --> B[N]
* with an strip_outer_cast on the first argument to produce a product *)
let prod_app t n =
match kind_of_term (strip_outer_cast t) with
| Prod (_,_,b) -> subst1 n b
| _ ->
errorlabstrm "prod_app"
(str"Needed a product, but didn't find one" ++ fnl ())
(* prod_appvect T [| a1 ; ... ; an |] -> (T a1 ... an) *)
let prod_appvect t nL = Array.fold_left prod_app t nL
(* prod_applist T [ a1 ; ... ; an ] -> (T a1 ... an) *)
let prod_applist t nL = List.fold_left prod_app t nL
let it_mkProd_or_LetIn = List.fold_left (fun c d -> mkProd_or_LetIn d c)
let it_mkLambda_or_LetIn = List.fold_left (fun c d -> mkLambda_or_LetIn d c)
(*********************************)
(* Other term destructors *)
(*********************************)
(* Transforms a product term (x1:T1)..(xn:Tn)T into the pair
([(xn,Tn);...;(x1,T1)],T), where T is not a product *)
let decompose_prod =
let rec prodec_rec l c = match kind_of_term c with
| Prod (x,t,c) -> prodec_rec ((x,t)::l) c
| Cast (c,_,_) -> prodec_rec l c
| _ -> l,c
in
prodec_rec []
(* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair
([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *)
let decompose_lam =
let rec lamdec_rec l c = match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c
| Cast (c,_,_) -> lamdec_rec l c
| _ -> l,c
in
lamdec_rec []
(* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T
into the pair ([(xn,Tn);...;(x1,T1)],T) *)
let decompose_prod_n n =
if n < 0 then error "decompose_prod_n: integer parameter must be positive";
let rec prodec_rec l n c =
if n=0 then l,c
else match kind_of_term c with
| Prod (x,t,c) -> prodec_rec ((x,t)::l) (n-1) c
| Cast (c,_,_) -> prodec_rec l n c
| _ -> error "decompose_prod_n: not enough products"
in
prodec_rec [] n
(* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T
into the pair ([(xn,Tn);...;(x1,T1)],T) *)
let decompose_lam_n n =
if n < 0 then error "decompose_lam_n: integer parameter must be positive";
let rec lamdec_rec l n c =
if n=0 then l,c
else match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec ((x,t)::l) (n-1) c
| Cast (c,_,_) -> lamdec_rec l n c
| _ -> error "decompose_lam_n: not enough abstractions"
in
lamdec_rec [] n
(* Transforms a product term (x1:T1)..(xn:Tn)T into the pair
([(xn,Tn);...;(x1,T1)],T), where T is not a product *)
let decompose_prod_assum =
let rec prodec_rec l c =
match kind_of_term c with
| Prod (x,t,c) -> prodec_rec (add_rel_decl (x,None,t) l) c
| LetIn (x,b,t,c) -> prodec_rec (add_rel_decl (x,Some b,t) l) c
| Cast (c,_,_) -> prodec_rec l c
| _ -> l,c
in
prodec_rec empty_rel_context
(* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair
([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *)
let decompose_lam_assum =
let rec lamdec_rec l c =
match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec (add_rel_decl (x,None,t) l) c
| LetIn (x,b,t,c) -> lamdec_rec (add_rel_decl (x,Some b,t) l) c
| Cast (c,_,_) -> lamdec_rec l c
| _ -> l,c
in
lamdec_rec empty_rel_context
(* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T
into the pair ([(xn,Tn);...;(x1,T1)],T) *)
let decompose_prod_n_assum n =
if n < 0 then
error "decompose_prod_n_assum: integer parameter must be positive";
let rec prodec_rec l n c =
if n=0 then l,c
else match kind_of_term c with
| Prod (x,t,c) -> prodec_rec (add_rel_decl (x,None,t) l) (n-1) c
| LetIn (x,b,t,c) -> prodec_rec (add_rel_decl (x,Some b,t) l) (n-1) c
| Cast (c,_,_) -> prodec_rec l n c
| c -> error "decompose_prod_n_assum: not enough assumptions"
in
prodec_rec empty_rel_context n
(* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T
into the pair ([(xn,Tn);...;(x1,T1)],T)
Lets in between are not expanded but turn into local definitions,
but n is the actual number of destructurated lambdas. *)
let decompose_lam_n_assum n =
if n < 0 then
error "decompose_lam_n_assum: integer parameter must be positive";
let rec lamdec_rec l n c =
if n=0 then l,c
else match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec (add_rel_decl (x,None,t) l) (n-1) c
| LetIn (x,b,t,c) -> lamdec_rec (add_rel_decl (x,Some b,t) l) n c
| Cast (c,_,_) -> lamdec_rec l n c
| c -> error "decompose_lam_n_assum: not enough abstractions"
in
lamdec_rec empty_rel_context n
(* (nb_lam [na1:T1]...[nan:Tan]c) where c is not an abstraction
* gives n (casts are ignored) *)
let nb_lam =
let rec nbrec n c = match kind_of_term c with
| Lambda (_,_,c) -> nbrec (n+1) c
| Cast (c,_,_) -> nbrec n c
| _ -> n
in
nbrec 0
(* similar to nb_lam, but gives the number of products instead *)
let nb_prod =
let rec nbrec n c = match kind_of_term c with
| Prod (_,_,c) -> nbrec (n+1) c
| Cast (c,_,_) -> nbrec n c
| _ -> n
in
nbrec 0
let prod_assum t = fst (decompose_prod_assum t)
let prod_n_assum n t = fst (decompose_prod_n_assum n t)
let strip_prod_assum t = snd (decompose_prod_assum t)
let strip_prod t = snd (decompose_prod t)
let strip_prod_n n t = snd (decompose_prod_n n t)
let lam_assum t = fst (decompose_lam_assum t)
let lam_n_assum n t = fst (decompose_lam_n_assum n t)
let strip_lam_assum t = snd (decompose_lam_assum t)
let strip_lam t = snd (decompose_lam t)
let strip_lam_n n t = snd (decompose_lam_n n t)
(***************************)
(* Arities *)
(***************************)
(* An "arity" is a term of the form [[x1:T1]...[xn:Tn]s] with [s] a sort.
Such a term can canonically be seen as the pair of a context of types
and of a sort *)
type arity = rel_context * sorts
let destArity =
let rec prodec_rec l c =
match kind_of_term c with
| Prod (x,t,c) -> prodec_rec ((x,None,t)::l) c
| LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t)::l) c
| Cast (c,_,_) -> prodec_rec l c
| Sort s -> l,s
| _ -> anomaly "destArity: not an arity"
in
prodec_rec []
let mkArity (sign,s) = it_mkProd_or_LetIn (mkSort s) sign
let rec isArity c =
match kind_of_term c with
| Prod (_,_,c) -> isArity c
| LetIn (_,b,_,c) -> isArity (subst1 b c)
| Cast (c,_,_) -> isArity c
| Sort _ -> true
| _ -> false
(*******************)
(* hash-consing *)
(*******************)
(* Hash-consing of [constr] does not use the module [Hashcons] because
[Hashcons] is not efficient on deep tree-like data
structures. Indeed, [Hashcons] is based the (very efficient)
generic hash function [Hashtbl.hash], which computes the hash key
through a depth bounded traversal of the data structure to be
hashed. As a consequence, for a deep [constr] like the natural
number 1000 (S (S (... (S O)))), the same hash is assigned to all
the sub [constr]s greater than the maximal depth handled by
[Hashtbl.hash]. This entails a huge number of collisions in the
hash table and leads to cubic hash-consing in this worst-case.
In order to compute a hash key that is independent of the data
structure depth while being constant-time, an incremental hashing
function must be devised. A standard implementation creates a cache
of the hashing function by decorating each node of the hash-consed
data structure with its hash key. In that case, the hash function
can deduce the hash key of a toplevel data structure by a local
computation based on the cache held on its substructures.
Unfortunately, this simple implementation introduces a space
overhead that is damageable for the hash-consing of small [constr]s
(the most common case). One can think of an heterogeneous
distribution of caches on smartly chosen nodes, but this is forbidden
by the use of generic equality in Coq source code. (Indeed, this forces
each [constr] to have a unique canonical representation.)
Given that hash-consing proceeds inductively, we can nonetheless
computes the hash key incrementally during hash-consing by changing
a little the signature of the hash-consing function: it now returns
both the hash-consed term and its hash key. This simple solution is
implemented in the following code: it does not introduce a space
overhead in [constr], that's why the efficiency is unchanged for
small [constr]s. Besides, it does handle deep [constr]s without
introducing an unreasonable number of collisions in the hash table.
Some benchmarks make us think that this implementation of
hash-consing is linear in the size of the hash-consed data
structure for our daily use of Coq.
*)
let array_eqeq t1 t2 =
t1 == t2 ||
(Array.length t1 = Array.length t2 &&
let rec aux i =
(i = Array.length t1) || (t1.(i) == t2.(i) && aux (i + 1))
in aux 0)
let equals_constr t1 t2 =
match t1, t2 with
| Rel n1, Rel n2 -> n1 == n2
| Meta m1, Meta m2 -> m1 == m2
| Var id1, Var id2 -> id1 == id2
| Sort s1, Sort s2 -> s1 == s2
| Cast (c1,k1,t1), Cast (c2,k2,t2) -> c1 == c2 & k1 == k2 & t1 == t2
| Prod (n1,t1,c1), Prod (n2,t2,c2) -> n1 == n2 & t1 == t2 & c1 == c2
| Lambda (n1,t1,c1), Lambda (n2,t2,c2) -> n1 == n2 & t1 == t2 & c1 == c2
| LetIn (n1,b1,t1,c1), LetIn (n2,b2,t2,c2) ->
n1 == n2 & b1 == b2 & t1 == t2 & c1 == c2
| App (c1,l1), App (c2,l2) -> c1 == c2 & array_eqeq l1 l2
| Evar (e1,l1), Evar (e2,l2) -> e1 = e2 & array_eqeq l1 l2
| Const c1, Const c2 -> c1 == c2
| Ind (sp1,i1), Ind (sp2,i2) -> sp1 == sp2 & i1 = i2
| Construct ((sp1,i1),j1), Construct ((sp2,i2),j2) ->
sp1 == sp2 & i1 = i2 & j1 = j2
| Case (ci1,p1,c1,bl1), Case (ci2,p2,c2,bl2) ->
ci1 == ci2 & p1 == p2 & c1 == c2 & array_eqeq bl1 bl2
| Fix (ln1,(lna1,tl1,bl1)), Fix (ln2,(lna2,tl2,bl2)) ->
ln1 = ln2
& array_eqeq lna1 lna2
& array_eqeq tl1 tl2
& array_eqeq bl1 bl2
| CoFix(ln1,(lna1,tl1,bl1)), CoFix(ln2,(lna2,tl2,bl2)) ->
ln1 = ln2
& array_eqeq lna1 lna2
& array_eqeq tl1 tl2
& array_eqeq bl1 bl2
| _ -> false
(** Note that the following Make has the side effect of creating
once and for all the table we'll use for hash-consing all constr *)
module H = Hashtbl_alt.Make(struct type t = constr let equals = equals_constr end)
open Hashtbl_alt.Combine
(* [hcons_term hash_consing_functions constr] computes an hash-consed
representation for [constr] using [hash_consing_functions] on
leaves. *)
let hcons_term (sh_sort,sh_ci,sh_construct,sh_ind,sh_con,sh_na,sh_id) =
(* Note : we hash-cons constr arrays *in place* *)
let rec hash_term_array t =
let accu = ref 0 in
for i = 0 to Array.length t - 1 do
let x, h = sh_rec t.(i) in
accu := combine !accu h;
t.(i) <- x
done;
!accu
and hash_term t =
match t with
| Var i ->
(Var (sh_id i), combinesmall 1 (Hashtbl.hash i))
| Sort s ->
(Sort (sh_sort s), combinesmall 2 (Hashtbl.hash s))
| Cast (c, k, t) ->
let c, hc = sh_rec c in
let t, ht = sh_rec t in
(Cast (c, k, t), combinesmall 3 (combine3 hc (Hashtbl.hash k) ht))
| Prod (na,t,c) ->
let t, ht = sh_rec t
and c, hc = sh_rec c in
(Prod (sh_na na, t, c), combinesmall 4 (combine3 (Hashtbl.hash na) ht hc))
| Lambda (na,t,c) ->
let t, ht = sh_rec t
and c, hc = sh_rec c in
(Lambda (sh_na na, t, c), combinesmall 5 (combine3 (Hashtbl.hash na) ht hc))
| LetIn (na,b,t,c) ->
let b, hb = sh_rec b in
let t, ht = sh_rec t in
let c, hc = sh_rec c in
(LetIn (sh_na na, b, t, c), combinesmall 6 (combine4 (Hashtbl.hash na) hb ht hc))
| App (c,l) ->
let c, hc = sh_rec c in
let hl = hash_term_array l in
(App (c, l), combinesmall 7 (combine hl hc))
| Evar (e,l) ->
let hl = hash_term_array l in
(* since the array have been hashed in place : *)
(t, combinesmall 8 (combine (Hashtbl.hash e) hl))
| Const c ->
(Const (sh_con c), combinesmall 9 (Hashtbl.hash c))
| Ind ((kn,i) as ind) ->
(Ind (sh_ind ind), combinesmall 9 (combine (Hashtbl.hash kn) i))
| Construct (((kn,i),j) as c)->
(Construct (sh_construct c), combinesmall 10 (combine3 (Hashtbl.hash kn) i j))
| Case (ci,p,c,bl) ->
let p, hp = sh_rec p
and c, hc = sh_rec c in
let hbl = hash_term_array bl in
let hbl = combine (combine hc hp) hbl in
(Case (sh_ci ci, p, c, bl), combinesmall 11 hbl)
| Fix (ln,(lna,tl,bl)) ->
let hbl = hash_term_array bl in
let htl = hash_term_array tl in
Array.iteri (fun i x -> lna.(i) <- sh_na x) lna;
(* since the three arrays have been hashed in place : *)
(t, combinesmall 13 (combine (Hashtbl.hash lna) (combine hbl htl)))
| CoFix(ln,(lna,tl,bl)) ->
let hbl = hash_term_array bl in
let htl = hash_term_array tl in
Array.iteri (fun i x -> lna.(i) <- sh_na x) lna;
(* since the three arrays have been hashed in place : *)
(t, combinesmall 14 (combine (Hashtbl.hash lna) (combine hbl htl)))
| Meta n ->
(t, combinesmall 15 n)
| Rel n ->
(t, combinesmall 16 n)
and sh_rec t =
let (y, h) = hash_term t in
(* [h] must be positive. *)
let h = h land 0x3FFFFFFF in
(H.may_add_and_get h y, h)
in
(* Make sure our statically allocated Rels (1 to 16) are considered
as canonical, and hence hash-consed to themselves *)
ignore (hash_term_array rels);
fun t -> fst (sh_rec t)
(* Exported hashing fonction on constr, used mainly in plugins.
Appears to have slight differences from [snd (hash_term t)] above ? *)
let rec hash_constr t =
match kind_of_term t with
| Var i -> combinesmall 1 (Hashtbl.hash i)
| Sort s -> combinesmall 2 (Hashtbl.hash s)
| Cast (c, _, _) -> hash_constr c
| Prod (_, t, c) -> combinesmall 4 (combine (hash_constr t) (hash_constr c))
| Lambda (_, t, c) -> combinesmall 5 (combine (hash_constr t) (hash_constr c))
| LetIn (_, b, t, c) ->
combinesmall 6 (combine3 (hash_constr b) (hash_constr t) (hash_constr c))
| App (c,l) when isCast c -> hash_constr (mkApp (pi1 (destCast c),l))
| App (c,l) ->
combinesmall 7 (combine (hash_term_array l) (hash_constr c))
| Evar (e,l) ->
combinesmall 8 (combine (Hashtbl.hash e) (hash_term_array l))
| Const c ->
combinesmall 9 (Hashtbl.hash c) (* TODO: proper hash function for constants *)
| Ind (kn,i) ->
combinesmall 9 (combine (Hashtbl.hash kn) i)
| Construct ((kn,i),j) ->
combinesmall 10 (combine3 (Hashtbl.hash kn) i j)
| Case (_ , p, c, bl) ->
combinesmall 11 (combine3 (hash_constr c) (hash_constr p) (hash_term_array bl))
| Fix (ln ,(_, tl, bl)) ->
combinesmall 13 (combine (hash_term_array bl) (hash_term_array tl))
| CoFix(ln, (_, tl, bl)) ->
combinesmall 14 (combine (hash_term_array bl) (hash_term_array tl))
| Meta n -> combinesmall 15 n
| Rel n -> combinesmall 16 n
and hash_term_array t =
Array.fold_left (fun acc t -> combine (hash_constr t) acc) 0 t
module Hsorts =
Hashcons.Make(
struct
type t = sorts
type u = universe -> universe
let hash_sub huniv = function
Prop c -> Prop c
| Type u -> Type (huniv u)
let equal s1 s2 =
match (s1,s2) with
(Prop c1, Prop c2) -> c1=c2
| (Type u1, Type u2) -> u1 == u2
|_ -> false
let hash = Hashtbl.hash
end)
module Hcaseinfo =
Hashcons.Make(
struct
type t = case_info
type u = inductive -> inductive
let hash_sub hind ci = { ci with ci_ind = hind ci.ci_ind }
let equal ci ci' =
ci.ci_ind == ci'.ci_ind &&
ci.ci_npar = ci'.ci_npar &&
ci.ci_cstr_ndecls = ci'.ci_cstr_ndecls && (* we use (=) on purpose *)
ci.ci_pp_info = ci'.ci_pp_info (* we use (=) on purpose *)
let hash = Hashtbl.hash
end)
let hcons_sorts = Hashcons.simple_hcons Hsorts.f hcons_univ
let hcons_caseinfo = Hashcons.simple_hcons Hcaseinfo.f hcons_ind
let hcons_constr =
hcons_term
(hcons_sorts,
hcons_caseinfo,
hcons_construct,
hcons_ind,
hcons_con,
hcons_name,
hcons_ident)
let hcons_types = hcons_constr
(*******)
(* Type of abstract machine values *)
type values
|