1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: sign.ml 10451 2008-01-18 17:20:28Z barras $ *)
open Names
open Util
open Term
(*s Signatures of named hypotheses. Used for section variables and
goal assumptions. *)
type named_context = named_declaration list
let empty_named_context = []
let add_named_decl d sign = d::sign
let rec lookup_named id = function
| (id',_,_ as decl) :: _ when id=id' -> decl
| _ :: sign -> lookup_named id sign
| [] -> raise Not_found
let named_context_length = List.length
let vars_of_named_context = List.map (fun (id,_,_) -> id)
let instance_from_named_context sign =
let rec inst_rec = function
| (id,None,_) :: sign -> mkVar id :: inst_rec sign
| _ :: sign -> inst_rec sign
| [] -> [] in
Array.of_list (inst_rec sign)
let fold_named_context f l ~init = List.fold_right f l init
let fold_named_context_reverse f ~init l = List.fold_left f init l
(*s Signatures of ordered section variables *)
type section_context = named_context
(*s Signatures of ordered optionally named variables, intended to be
accessed by de Bruijn indices (to represent bound variables) *)
type rel_declaration = name * constr option * types
type rel_context = rel_declaration list
let empty_rel_context = []
let add_rel_decl d ctxt = d::ctxt
let rec lookup_rel n sign =
match n, sign with
| 1, decl :: _ -> decl
| n, _ :: sign -> lookup_rel (n-1) sign
| _, [] -> raise Not_found
let rel_context_length = List.length
let rel_context_nhyps hyps =
let rec nhyps acc = function
| [] -> acc
| (_,None,_)::hyps -> nhyps (1+acc) hyps
| (_,Some _,_)::hyps -> nhyps acc hyps in
nhyps 0 hyps
let fold_rel_context f l ~init:x = List.fold_right f l x
let fold_rel_context_reverse f ~init:x l = List.fold_left f x l
let map_context f l =
let map_decl (n, body_o, typ as decl) =
let body_o' = Option.smartmap f body_o in
let typ' = f typ in
if body_o' == body_o && typ' == typ then decl else
(n, body_o', typ')
in
list_smartmap map_decl l
let map_rel_context = map_context
let map_named_context = map_context
let iter_rel_context f = List.iter (fun (_,b,t) -> f t; Option.iter f b)
let iter_named_context f = List.iter (fun (_,b,t) -> f t; Option.iter f b)
(* Push named declarations on top of a rel context *)
(* Bizarre. Should be avoided. *)
let push_named_to_rel_context hyps ctxt =
let rec push = function
| (id,b,t) :: l ->
let s, hyps = push l in
let d = (Name id, Option.map (subst_vars s) b, subst_vars s t) in
id::s, d::hyps
| [] -> [],[] in
let s, hyps = push hyps in
let rec subst = function
| d :: l ->
let n, ctxt = subst l in
(n+1), (map_rel_declaration (substn_vars n s) d)::ctxt
| [] -> 1, hyps in
snd (subst ctxt)
(*********************************)
(* Term constructors *)
(*********************************)
let it_mkProd_or_LetIn = List.fold_left (fun c d -> mkProd_or_LetIn d c)
let it_mkLambda_or_LetIn = List.fold_left (fun c d -> mkLambda_or_LetIn d c)
(*********************************)
(* Term destructors *)
(*********************************)
type arity = rel_context * sorts
(* Decompose an arity (i.e. a product of the form (x1:T1)..(xn:Tn)s
with s a sort) into the pair ([(xn,Tn);...;(x1,T1)],s) *)
let destArity =
let rec prodec_rec l c =
match kind_of_term c with
| Prod (x,t,c) -> prodec_rec ((x,None,t)::l) c
| LetIn (x,b,t,c) -> prodec_rec ((x,Some b,t)::l) c
| Cast (c,_,_) -> prodec_rec l c
| Sort s -> l,s
| _ -> anomaly "destArity: not an arity"
in
prodec_rec []
let mkArity (sign,s) = it_mkProd_or_LetIn (mkSort s) sign
let rec isArity c =
match kind_of_term c with
| Prod (_,_,c) -> isArity c
| LetIn (_,b,_,c) -> isArity (subst1 b c)
| Cast (c,_,_) -> isArity c
| Sort _ -> true
| _ -> false
(* Transforms a product term (x1:T1)..(xn:Tn)T into the pair
([(xn,Tn);...;(x1,T1)],T), where T is not a product *)
let decompose_prod_assum =
let rec prodec_rec l c =
match kind_of_term c with
| Prod (x,t,c) -> prodec_rec (add_rel_decl (x,None,t) l) c
| LetIn (x,b,t,c) -> prodec_rec (add_rel_decl (x,Some b,t) l) c
| Cast (c,_,_) -> prodec_rec l c
| _ -> l,c
in
prodec_rec empty_rel_context
(* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair
([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *)
let decompose_lam_assum =
let rec lamdec_rec l c =
match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec (add_rel_decl (x,None,t) l) c
| LetIn (x,b,t,c) -> lamdec_rec (add_rel_decl (x,Some b,t) l) c
| Cast (c,_,_) -> lamdec_rec l c
| _ -> l,c
in
lamdec_rec empty_rel_context
(* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T
into the pair ([(xn,Tn);...;(x1,T1)],T) *)
let decompose_prod_n_assum n =
if n < 0 then
error "decompose_prod_n_assum: integer parameter must be positive";
let rec prodec_rec l n c =
if n=0 then l,c
else match kind_of_term c with
| Prod (x,t,c) -> prodec_rec (add_rel_decl (x,None,t) l) (n-1) c
| LetIn (x,b,t,c) -> prodec_rec (add_rel_decl (x,Some b,t) l) (n-1) c
| Cast (c,_,_) -> prodec_rec l n c
| c -> error "decompose_prod_n_assum: not enough assumptions"
in
prodec_rec empty_rel_context n
(* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T
into the pair ([(xn,Tn);...;(x1,T1)],T)
Lets in between are not expanded but turn into local definitions,
but n is the actual number of destructurated lambdas. *)
let decompose_lam_n_assum n =
if n < 0 then
error "decompose_lam_n_assum: integer parameter must be positive";
let rec lamdec_rec l n c =
if n=0 then l,c
else match kind_of_term c with
| Lambda (x,t,c) -> lamdec_rec (add_rel_decl (x,None,t) l) (n-1) c
| LetIn (x,b,t,c) -> lamdec_rec (add_rel_decl (x,Some b,t) l) n c
| Cast (c,_,_) -> lamdec_rec l n c
| c -> error "decompose_lam_n_assum: not enough abstractions"
in
lamdec_rec empty_rel_context n
|