1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: reduction.ml 11897 2009-02-09 19:28:02Z barras $ *)
open Util
open Names
open Term
open Univ
open Declarations
open Environ
open Closure
open Esubst
let unfold_reference ((ids, csts), infos) k =
match k with
| VarKey id when not (Idpred.mem id ids) -> None
| ConstKey cst when not (Cpred.mem cst csts) -> None
| _ -> unfold_reference infos k
let rec is_empty_stack = function
[] -> true
| Zupdate _::s -> is_empty_stack s
| Zshift _::s -> is_empty_stack s
| _ -> false
(* Compute the lift to be performed on a term placed in a given stack *)
let el_stack el stk =
let n =
List.fold_left
(fun i z ->
match z with
Zshift n -> i+n
| _ -> i)
0
stk in
el_shft n el
let compare_stack_shape stk1 stk2 =
let rec compare_rec bal stk1 stk2 =
match (stk1,stk2) with
([],[]) -> bal=0
| ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2
| (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2
| (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2
| (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2
| (Zcase(c1,_,_)::s1, Zcase(c2,_,_)::s2) ->
bal=0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2
| (Zfix(_,a1)::s1, Zfix(_,a2)::s2) ->
bal=0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
| (_,_) -> false in
compare_rec 0 stk1 stk2
type lft_constr_stack_elt =
Zlapp of (lift * fconstr) array
| Zlfix of (lift * fconstr) * lft_constr_stack
| Zlcase of case_info * lift * fconstr * fconstr array
and lft_constr_stack = lft_constr_stack_elt list
let rec zlapp v = function
Zlapp v2 :: s -> zlapp (Array.append v v2) s
| s -> Zlapp v :: s
let pure_stack lfts stk =
let rec pure_rec lfts stk =
match stk with
[] -> (lfts,[])
| zi::s ->
(match (zi,pure_rec lfts s) with
(Zupdate _,lpstk) -> lpstk
| (Zshift n,(l,pstk)) -> (el_shft n l, pstk)
| (Zapp a, (l,pstk)) ->
(l,zlapp (Array.map (fun t -> (l,t)) a) pstk)
| (Zfix(fx,a),(l,pstk)) ->
let (lfx,pa) = pure_rec l a in
(l, Zlfix((lfx,fx),pa)::pstk)
| (Zcase(ci,p,br),(l,pstk)) ->
(l,Zlcase(ci,l,p,br)::pstk)) in
snd (pure_rec lfts stk)
(****************************************************************************)
(* Reduction Functions *)
(****************************************************************************)
let nf_betaiota t =
norm_val (create_clos_infos betaiota empty_env) (inject t)
let whd_betaiotazeta x =
match kind_of_term x with
| (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _) -> x
| _ -> whd_val (create_clos_infos betaiotazeta empty_env) (inject x)
let whd_betadeltaiota env t =
match kind_of_term t with
| (Sort _|Meta _|Evar _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _) -> t
| _ -> whd_val (create_clos_infos betadeltaiota env) (inject t)
let whd_betadeltaiota_nolet env t =
match kind_of_term t with
| (Sort _|Meta _|Evar _|Ind _|Construct _|
Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t
| _ -> whd_val (create_clos_infos betadeltaiotanolet env) (inject t)
(* Beta *)
let beta_appvect c v =
let rec stacklam env t stack =
match kind_of_term t, stack with
Lambda(_,_,c), arg::stacktl -> stacklam (arg::env) c stacktl
| _ -> applist (substl env t, stack) in
stacklam [] c (Array.to_list v)
(********************************************************************)
(* Conversion *)
(********************************************************************)
(* Conversion utility functions *)
type 'a conversion_function = env -> 'a -> 'a -> Univ.constraints
type 'a trans_conversion_function = transparent_state -> env -> 'a -> 'a -> Univ.constraints
exception NotConvertible
exception NotConvertibleVect of int
let compare_stacks f fmind lft1 stk1 lft2 stk2 cuniv =
let rec cmp_rec pstk1 pstk2 cuniv =
match (pstk1,pstk2) with
| (z1::s1, z2::s2) ->
let cu1 = cmp_rec s1 s2 cuniv in
(match (z1,z2) with
| (Zlapp a1,Zlapp a2) -> array_fold_right2 f a1 a2 cu1
| (Zlfix(fx1,a1),Zlfix(fx2,a2)) ->
let cu2 = f fx1 fx2 cu1 in
cmp_rec a1 a2 cu2
| (Zlcase(ci1,l1,p1,br1),Zlcase(ci2,l2,p2,br2)) ->
if not (fmind ci1.ci_ind ci2.ci_ind) then
raise NotConvertible;
let cu2 = f (l1,p1) (l2,p2) cu1 in
array_fold_right2 (fun c1 c2 -> f (l1,c1) (l2,c2)) br1 br2 cu2
| _ -> assert false)
| _ -> cuniv in
if compare_stack_shape stk1 stk2 then
cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) cuniv
else raise NotConvertible
(* Convertibility of sorts *)
(* The sort cumulativity is
Prop <= Set <= Type 1 <= ... <= Type i <= ...
and this holds whatever Set is predicative or impredicative
*)
type conv_pb =
| CONV
| CUMUL
let sort_cmp pb s0 s1 cuniv =
match (s0,s1) with
| (Prop c1, Prop c2) ->
if c1 = Null or c2 = Pos then cuniv (* Prop <= Set *)
else raise NotConvertible
| (Prop c1, Type u) when pb = CUMUL -> assert (is_univ_variable u); cuniv
| (Type u1, Type u2) ->
assert (is_univ_variable u2);
(match pb with
| CONV -> enforce_eq u1 u2 cuniv
| CUMUL -> enforce_geq u2 u1 cuniv)
| (_, _) -> raise NotConvertible
let conv_sort env s0 s1 = sort_cmp CONV s0 s1 Constraint.empty
let conv_sort_leq env s0 s1 = sort_cmp CUMUL s0 s1 Constraint.empty
let rec no_arg_available = function
| [] -> true
| Zupdate _ :: stk -> no_arg_available stk
| Zshift _ :: stk -> no_arg_available stk
| Zapp v :: stk -> Array.length v = 0 && no_arg_available stk
| Zcase _ :: _ -> true
| Zfix _ :: _ -> true
let rec no_nth_arg_available n = function
| [] -> true
| Zupdate _ :: stk -> no_nth_arg_available n stk
| Zshift _ :: stk -> no_nth_arg_available n stk
| Zapp v :: stk ->
let k = Array.length v in
if n >= k then no_nth_arg_available (n-k) stk
else false
| Zcase _ :: _ -> true
| Zfix _ :: _ -> true
let rec no_case_available = function
| [] -> true
| Zupdate _ :: stk -> no_case_available stk
| Zshift _ :: stk -> no_case_available stk
| Zapp _ :: stk -> no_case_available stk
| Zcase _ :: _ -> false
| Zfix _ :: _ -> true
let in_whnf (t,stk) =
match fterm_of t with
| (FLetIn _ | FCases _ | FApp _ | FCLOS _ | FLIFT _ | FCast _) -> false
| FLambda _ -> no_arg_available stk
| FConstruct _ -> no_case_available stk
| FCoFix _ -> no_case_available stk
| FFix(((ri,n),(_,_,_)),_) -> no_nth_arg_available ri.(n) stk
| (FFlex _ | FProd _ | FEvar _ | FInd _ | FAtom _ | FRel _) -> true
| FLOCKED -> assert false
(* Conversion between [lft1]term1 and [lft2]term2 *)
let rec ccnv cv_pb infos lft1 lft2 term1 term2 cuniv =
eqappr cv_pb infos (lft1, (term1,[])) (lft2, (term2,[])) cuniv
(* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *)
and eqappr cv_pb infos (lft1,st1) (lft2,st2) cuniv =
Util.check_for_interrupt ();
(* First head reduce both terms *)
let rec whd_both (t1,stk1) (t2,stk2) =
let st1' = whd_stack (snd infos) t1 stk1 in
let st2' = whd_stack (snd infos) t2 stk2 in
(* Now, whd_stack on term2 might have modified st1 (due to sharing),
and st1 might not be in whnf anymore. If so, we iterate ccnv. *)
if in_whnf st1' then (st1',st2') else whd_both st1' st2' in
let ((hd1,v1),(hd2,v2)) = whd_both st1 st2 in
let appr1 = (lft1,(hd1,v1)) and appr2 = (lft2,(hd2,v2)) in
(* compute the lifts that apply to the head of the term (hd1 and hd2) *)
let el1 = el_stack lft1 v1 in
let el2 = el_stack lft2 v2 in
match (fterm_of hd1, fterm_of hd2) with
(* case of leaves *)
| (FAtom a1, FAtom a2) ->
(match kind_of_term a1, kind_of_term a2 with
| (Sort s1, Sort s2) ->
assert (is_empty_stack v1 && is_empty_stack v2);
sort_cmp cv_pb s1 s2 cuniv
| (Meta n, Meta m) ->
if n=m
then convert_stacks infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
| _ -> raise NotConvertible)
| (FEvar ((ev1,args1),env1), FEvar ((ev2,args2),env2)) ->
if ev1=ev2 then
let u1 = convert_stacks infos lft1 lft2 v1 v2 cuniv in
convert_vect infos el1 el2
(Array.map (mk_clos env1) args1)
(Array.map (mk_clos env2) args2) u1
else raise NotConvertible
(* 2 index known to be bound to no constant *)
| (FRel n, FRel m) ->
if reloc_rel n el1 = reloc_rel m el2
then convert_stacks infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
(* 2 constants, 2 local defined vars or 2 defined rels *)
| (FFlex fl1, FFlex fl2) ->
(try (* try first intensional equality *)
if fl1 = fl2
then convert_stacks infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
with NotConvertible ->
(* else the oracle tells which constant is to be expanded *)
let (app1,app2) =
if Conv_oracle.oracle_order fl1 fl2 then
match unfold_reference infos fl1 with
| Some def1 -> ((lft1, whd_stack (snd infos) def1 v1), appr2)
| None ->
(match unfold_reference infos fl2 with
| Some def2 -> (appr1, (lft2, whd_stack (snd infos) def2 v2))
| None -> raise NotConvertible)
else
match unfold_reference infos fl2 with
| Some def2 -> (appr1, (lft2, whd_stack (snd infos) def2 v2))
| None ->
(match unfold_reference infos fl1 with
| Some def1 -> ((lft1, whd_stack (snd infos) def1 v1), appr2)
| None -> raise NotConvertible) in
eqappr cv_pb infos app1 app2 cuniv)
(* only one constant, defined var or defined rel *)
| (FFlex fl1, _) ->
(match unfold_reference infos fl1 with
| Some def1 ->
eqappr cv_pb infos (lft1, whd_stack (snd infos) def1 v1) appr2 cuniv
| None -> raise NotConvertible)
| (_, FFlex fl2) ->
(match unfold_reference infos fl2 with
| Some def2 ->
eqappr cv_pb infos appr1 (lft2, whd_stack (snd infos) def2 v2) cuniv
| None -> raise NotConvertible)
(* other constructors *)
| (FLambda _, FLambda _) ->
assert (is_empty_stack v1 && is_empty_stack v2);
let (_,ty1,bd1) = destFLambda mk_clos hd1 in
let (_,ty2,bd2) = destFLambda mk_clos hd2 in
let u1 = ccnv CONV infos el1 el2 ty1 ty2 cuniv in
ccnv CONV infos (el_lift el1) (el_lift el2) bd1 bd2 u1
| (FProd (_,c1,c2), FProd (_,c'1,c'2)) ->
assert (is_empty_stack v1 && is_empty_stack v2);
(* Luo's system *)
let u1 = ccnv CONV infos el1 el2 c1 c'1 cuniv in
ccnv cv_pb infos (el_lift el1) (el_lift el2) c2 c'2 u1
(* Inductive types: MutInd MutConstruct Fix Cofix *)
| (FInd ind1, FInd ind2) ->
if mind_equiv_infos (snd infos) ind1 ind2
then
convert_stacks infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
| (FConstruct (ind1,j1), FConstruct (ind2,j2)) ->
if j1 = j2 && mind_equiv_infos (snd infos) ind1 ind2
then
convert_stacks infos lft1 lft2 v1 v2 cuniv
else raise NotConvertible
| (FFix ((op1,(_,tys1,cl1)),e1), FFix((op2,(_,tys2,cl2)),e2)) ->
if op1 = op2
then
let n = Array.length cl1 in
let fty1 = Array.map (mk_clos e1) tys1 in
let fty2 = Array.map (mk_clos e2) tys2 in
let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
let u1 = convert_vect infos el1 el2 fty1 fty2 cuniv in
let u2 =
convert_vect infos
(el_liftn n el1) (el_liftn n el2) fcl1 fcl2 u1 in
convert_stacks infos lft1 lft2 v1 v2 u2
else raise NotConvertible
| (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) ->
if op1 = op2
then
let n = Array.length cl1 in
let fty1 = Array.map (mk_clos e1) tys1 in
let fty2 = Array.map (mk_clos e2) tys2 in
let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
let u1 = convert_vect infos el1 el2 fty1 fty2 cuniv in
let u2 =
convert_vect infos
(el_liftn n el1) (el_liftn n el2) fcl1 fcl2 u1 in
convert_stacks infos lft1 lft2 v1 v2 u2
else raise NotConvertible
(* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *)
| ( (FLetIn _, _) | (FCases _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_)
| (_, FLetIn _) | (_,FCases _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _)
| (FLOCKED,_) | (_,FLOCKED) ) -> assert false
(* In all other cases, terms are not convertible *)
| _ -> raise NotConvertible
and convert_stacks infos lft1 lft2 stk1 stk2 cuniv =
compare_stacks
(fun (l1,t1) (l2,t2) c -> ccnv CONV infos l1 l2 t1 t2 c)
(mind_equiv_infos (snd infos))
lft1 stk1 lft2 stk2 cuniv
and convert_vect infos lft1 lft2 v1 v2 cuniv =
let lv1 = Array.length v1 in
let lv2 = Array.length v2 in
if lv1 = lv2
then
let rec fold n univ =
if n >= lv1 then univ
else
let u1 = ccnv CONV infos lft1 lft2 v1.(n) v2.(n) univ in
fold (n+1) u1 in
fold 0 cuniv
else raise NotConvertible
let clos_fconv trans cv_pb evars env t1 t2 =
let infos = trans, create_clos_infos ~evars betaiotazeta env in
ccnv cv_pb infos ELID ELID (inject t1) (inject t2) Constraint.empty
let trans_fconv reds cv_pb evars env t1 t2 =
if eq_constr t1 t2 then Constraint.empty
else clos_fconv reds cv_pb evars env t1 t2
let trans_conv_cmp conv reds = trans_fconv reds conv (fun _->None)
let trans_conv ?(evars=fun _->None) reds = trans_fconv reds CONV evars
let trans_conv_leq ?(evars=fun _->None) reds = trans_fconv reds CUMUL evars
let fconv = trans_fconv (Idpred.full, Cpred.full)
let conv_cmp cv_pb = fconv cv_pb (fun _->None)
let conv ?(evars=fun _->None) = fconv CONV evars
let conv_leq ?(evars=fun _->None) = fconv CUMUL evars
let conv_leq_vecti ?(evars=fun _->None) env v1 v2 =
array_fold_left2_i
(fun i c t1 t2 ->
let c' =
try conv_leq ~evars env t1 t2
with NotConvertible -> raise (NotConvertibleVect i) in
Constraint.union c c')
Constraint.empty
v1
v2
(* option for conversion *)
let vm_conv = ref (fun cv_pb -> fconv cv_pb (fun _->None))
let set_vm_conv f = vm_conv := f
let vm_conv cv_pb env t1 t2 =
try
!vm_conv cv_pb env t1 t2
with Not_found | Invalid_argument _ ->
(* If compilation fails, fall-back to closure conversion *)
fconv cv_pb (fun _->None) env t1 t2
let default_conv = ref (fun cv_pb -> fconv cv_pb (fun _->None))
let set_default_conv f = default_conv := f
let default_conv cv_pb env t1 t2 =
try
!default_conv cv_pb env t1 t2
with Not_found | Invalid_argument _ ->
(* If compilation fails, fall-back to closure conversion *)
fconv cv_pb (fun _->None) env t1 t2
let default_conv_leq = default_conv CUMUL
(*
let convleqkey = Profile.declare_profile "Kernel_reduction.conv_leq";;
let conv_leq env t1 t2 =
Profile.profile4 convleqkey conv_leq env t1 t2;;
let convkey = Profile.declare_profile "Kernel_reduction.conv";;
let conv env t1 t2 =
Profile.profile4 convleqkey conv env t1 t2;;
*)
(********************************************************************)
(* Special-Purpose Reduction *)
(********************************************************************)
(* pseudo-reduction rule:
* [hnf_prod_app env s (Prod(_,B)) N --> B[N]
* with an HNF on the first argument to produce a product.
* if this does not work, then we use the string S as part of our
* error message. *)
let hnf_prod_app env t n =
match kind_of_term (whd_betadeltaiota env t) with
| Prod (_,_,b) -> subst1 n b
| _ -> anomaly "hnf_prod_app: Need a product"
let hnf_prod_applist env t nl =
List.fold_left (hnf_prod_app env) t nl
(* Dealing with arities *)
let dest_prod env =
let rec decrec env m c =
let t = whd_betadeltaiota env c in
match kind_of_term t with
| Prod (n,a,c0) ->
let d = (n,None,a) in
decrec (push_rel d env) (Sign.add_rel_decl d m) c0
| _ -> m,t
in
decrec env Sign.empty_rel_context
(* The same but preserving lets *)
let dest_prod_assum env =
let rec prodec_rec env l ty =
let rty = whd_betadeltaiota_nolet env ty in
match kind_of_term rty with
| Prod (x,t,c) ->
let d = (x,None,t) in
prodec_rec (push_rel d env) (Sign.add_rel_decl d l) c
| LetIn (x,b,t,c) ->
let d = (x,Some b,t) in
prodec_rec (push_rel d env) (Sign.add_rel_decl d l) c
| Cast (c,_,_) -> prodec_rec env l c
| _ -> l,rty
in
prodec_rec env Sign.empty_rel_context
let dest_arity env c =
let l, c = dest_prod_assum env c in
match kind_of_term c with
| Sort s -> l,s
| _ -> error "not an arity"
let is_arity env c =
try
let _ = dest_arity env c in
true
with UserError _ -> false
|