1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Util
open Names
open Esubst
open Constr
open Declarations
open Pre_env
open Nativevalues
open Nativeinstr
module RelDecl = Context.Rel.Declaration
exception NotClosed
type evars =
{ evars_val : existential -> constr option;
evars_typ : existential -> types;
evars_metas : metavariable -> types }
(*s Constructors *)
let mkLapp f args =
if Array.is_empty args then f
else
match f with
| Lapp(f', args') -> Lapp (f', Array.append args' args)
| _ -> Lapp(f, args)
let mkLlam ids body =
if Array.is_empty ids then body
else
match body with
| Llam(ids', body) -> Llam(Array.append ids ids', body)
| _ -> Llam(ids, body)
let decompose_Llam lam =
match lam with
| Llam(ids,body) -> ids, body
| _ -> [||], lam
let rec decompose_Llam_Llet lam =
match lam with
| Llam(ids,body) ->
let vars, body = decompose_Llam_Llet body in
Array.fold_right (fun x l -> (x, None) :: l) ids vars, body
| Llet(id,def,body) ->
let vars, body = decompose_Llam_Llet body in
(id,Some def) :: vars, body
| _ -> [], lam
let decompose_Llam_Llet lam =
let vars, body = decompose_Llam_Llet lam in
Array.of_list vars, body
(*s Operators on substitution *)
let subst_id = subs_id 0
let lift = subs_lift
let liftn = subs_liftn
let cons v subst = subs_cons([|v|], subst)
let shift subst = subs_shft (1, subst)
(* Linked code location utilities *)
let get_mind_prefix env mind =
let _,name = lookup_mind_key mind env in
match !name with
| NotLinked -> ""
| Linked s -> s
| LinkedInteractive s -> s
let get_const_prefix env c =
let _,(nameref,_) = lookup_constant_key c env in
match !nameref with
| NotLinked -> ""
| Linked s -> s
| LinkedInteractive s -> s
(* A generic map function *)
let rec map_lam_with_binders g f n lam =
match lam with
| Lrel _ | Lvar _ | Lconst _ | Lproj _ | Lval _ | Lsort _ | Lind _
| Lconstruct _ | Llazy | Lforce | Lmeta _ -> lam
| Lprod(dom,codom) ->
let dom' = f n dom in
let codom' = f n codom in
if dom == dom' && codom == codom' then lam else Lprod(dom',codom')
| Llam(ids,body) ->
let body' = f (g (Array.length ids) n) body in
if body == body' then lam else mkLlam ids body'
| Llet(id,def,body) ->
let def' = f n def in
let body' = f (g 1 n) body in
if body == body' && def == def' then lam else Llet(id,def',body')
| Lapp(fct,args) ->
let fct' = f n fct in
let args' = Array.smartmap (f n) args in
if fct == fct' && args == args' then lam else mkLapp fct' args'
| Lprim(prefix,kn,op,args) ->
let args' = Array.smartmap (f n) args in
if args == args' then lam else Lprim(prefix,kn,op,args')
| Lcase(annot,t,a,br) ->
let t' = f n t in
let a' = f n a in
let on_b b =
let (cn,ids,body) = b in
let body' =
if Array.is_empty ids then f n body
else f (g (Array.length ids) n) body in
if body == body' then b else (cn,ids,body') in
let br' = Array.smartmap on_b br in
if t == t' && a == a' && br == br' then lam else Lcase(annot,t',a',br')
| Lif(t,bt,bf) ->
let t' = f n t in
let bt' = f n bt in
let bf' = f n bf in
if t == t' && bt == bt' && bf == bf' then lam else Lif(t',bt',bf')
| Lfix(init,(ids,ltypes,lbodies)) ->
let ltypes' = Array.smartmap (f n) ltypes in
let lbodies' = Array.smartmap (f (g (Array.length ids) n)) lbodies in
if ltypes == ltypes' && lbodies == lbodies' then lam
else Lfix(init,(ids,ltypes',lbodies'))
| Lcofix(init,(ids,ltypes,lbodies)) ->
let ltypes' = Array.smartmap (f n) ltypes in
let lbodies' = Array.smartmap (f (g (Array.length ids) n)) lbodies in
if ltypes == ltypes' && lbodies == lbodies' then lam
else Lcofix(init,(ids,ltypes',lbodies'))
| Lmakeblock(prefix,cn,tag,args) ->
let args' = Array.smartmap (f n) args in
if args == args' then lam else Lmakeblock(prefix,cn,tag,args')
| Luint u ->
let u' = map_uint g f n u in
if u == u' then lam else Luint u'
| Levar (evk, ty, args) ->
let ty' = f n ty in
let args' = Array.smartmap (f n) args in
if ty == ty' && args == args' then lam else Levar (evk, ty', args')
and map_uint g f n u =
match u with
| UintVal _ -> u
| UintDigits(prefix,c,args) ->
let args' = Array.smartmap (f n) args in
if args == args' then u else UintDigits(prefix,c,args')
| UintDecomp(prefix,c,a) ->
let a' = f n a in
if a == a' then u else UintDecomp(prefix,c,a')
(*s Lift and substitution *)
let rec lam_exlift el lam =
match lam with
| Lrel(id,i) ->
let i' = reloc_rel i el in
if i == i' then lam else Lrel(id,i')
| _ -> map_lam_with_binders el_liftn lam_exlift el lam
let lam_lift k lam =
if Int.equal k 0 then lam
else lam_exlift (el_shft k el_id) lam
let lam_subst_rel lam id n subst =
match expand_rel n subst with
| Inl(k,v) -> lam_lift k v
| Inr(n',_) ->
if n == n' then lam
else Lrel(id, n')
let rec lam_exsubst subst lam =
match lam with
| Lrel(id,i) -> lam_subst_rel lam id i subst
| _ -> map_lam_with_binders liftn lam_exsubst subst lam
let lam_subst_args subst args =
if is_subs_id subst then args
else Array.smartmap (lam_exsubst subst) args
(** Simplification of lambda expression *)
(* [simplify subst lam] simplify the expression [lam_subst subst lam] *)
(* that is : *)
(* - Reduce [let] is the definition can be substituted i.e: *)
(* - a variable (rel or identifier) *)
(* - a constant *)
(* - a structured constant *)
(* - a function *)
(* - Transform beta redex into [let] expression *)
(* - Move arguments under [let] *)
(* Invariant : Terms in [subst] are already simplified and can be *)
(* substituted *)
let can_subst lam =
match lam with
| Lrel _ | Lvar _ | Lconst _ | Lproj _ | Lval _ | Lsort _ | Lind _ | Llam _
| Lconstruct _ | Lmeta _ | Levar _ -> true
| _ -> false
let can_merge_if bt bf =
match bt, bf with
| Llam(idst,_), Llam(idsf,_) -> true
| _ -> false
let merge_if t bt bf =
let (idst,bodyt) = decompose_Llam bt in
let (idsf,bodyf) = decompose_Llam bf in
let nt = Array.length idst in
let nf = Array.length idsf in
let common,idst,idsf =
if Int.equal nt nf then idst, [||], [||]
else
if nt < nf then idst,[||], Array.sub idsf nt (nf - nt)
else idsf, Array.sub idst nf (nt - nf), [||] in
Llam(common,
Lif(lam_lift (Array.length common) t,
mkLlam idst bodyt,
mkLlam idsf bodyf))
let rec simplify subst lam =
match lam with
| Lrel(id,i) -> lam_subst_rel lam id i subst
| Llet(id,def,body) ->
let def' = simplify subst def in
if can_subst def' then simplify (cons def' subst) body
else
let body' = simplify (lift subst) body in
if def == def' && body == body' then lam
else Llet(id,def',body')
| Lapp(f,args) ->
begin match simplify_app subst f subst args with
| Lapp(f',args') when f == f' && args == args' -> lam
| lam' -> lam'
end
| Lif(t,bt,bf) ->
let t' = simplify subst t in
let bt' = simplify subst bt in
let bf' = simplify subst bf in
if can_merge_if bt' bf' then merge_if t' bt' bf'
else
if t == t' && bt == bt' && bf == bf' then lam
else Lif(t',bt',bf')
| _ -> map_lam_with_binders liftn simplify subst lam
and simplify_app substf f substa args =
match f with
| Lrel(id, i) ->
begin match lam_subst_rel f id i substf with
| Llam(ids, body) ->
reduce_lapp
subst_id (Array.to_list ids) body
substa (Array.to_list args)
| f' -> mkLapp f' (simplify_args substa args)
end
| Llam(ids, body) ->
reduce_lapp substf (Array.to_list ids) body substa (Array.to_list args)
| Llet(id, def, body) ->
let def' = simplify substf def in
if can_subst def' then
simplify_app (cons def' substf) body substa args
else
Llet(id, def', simplify_app (lift substf) body (shift substa) args)
| Lapp(f, args') ->
let args = Array.append
(lam_subst_args substf args') (lam_subst_args substa args) in
simplify_app substf f subst_id args
(* TODO | Lproj -> simplify if the argument is known or a known global *)
| _ -> mkLapp (simplify substf f) (simplify_args substa args)
and simplify_args subst args = Array.smartmap (simplify subst) args
and reduce_lapp substf lids body substa largs =
match lids, largs with
| id::lids, a::largs ->
let a = simplify substa a in
if can_subst a then
reduce_lapp (cons a substf) lids body substa largs
else
let body = reduce_lapp (lift substf) lids body (shift substa) largs in
Llet(id, a, body)
| [], [] -> simplify substf body
| _::_, _ ->
Llam(Array.of_list lids, simplify (liftn (List.length lids) substf) body)
| [], _::_ -> simplify_app substf body substa (Array.of_list largs)
(*s Translation from [constr] to [lambda] *)
(* Translation of constructor *)
let is_value lc =
match lc with
| Lval _ -> true
| Lmakeblock(_,_,_,args) when Array.is_empty args -> true
| Luint (UintVal _) -> true
| _ -> false
let get_value lc =
match lc with
| Lval v -> v
| Lmakeblock(_,_,tag,args) when Array.is_empty args ->
Nativevalues.mk_int tag
| Luint (UintVal i) -> Nativevalues.mk_uint i
| _ -> raise Not_found
let make_args start _end =
Array.init (start - _end + 1) (fun i -> Lrel (Anonymous, start - i))
(* Translation of constructors *)
let makeblock env cn u tag args =
if Array.for_all is_value args && Array.length args > 0 then
let args = Array.map get_value args in
Lval (Nativevalues.mk_block tag args)
else
let prefix = get_mind_prefix env (fst (fst cn)) in
Lmakeblock(prefix, (cn,u), tag, args)
(* Translation of constants *)
let rec get_alias env (kn, u as p) =
let tps = (lookup_constant kn env).const_body_code in
match tps with
| None -> p
| Some tps ->
match Cemitcodes.force tps with
| Cemitcodes.BCalias kn' -> get_alias env (kn', u)
| _ -> p
(*i Global environment *)
let global_env = ref empty_env
let set_global_env env = global_env := env
let get_names decl =
let decl = Array.of_list decl in
Array.map fst decl
(* Rel Environment *)
module Vect =
struct
type 'a t = {
mutable elems : 'a array;
mutable size : int;
}
let make n a = {
elems = Array.make n a;
size = 0;
}
let extend v =
if Int.equal v.size (Array.length v.elems) then
let new_size = min (2*v.size) Sys.max_array_length in
if new_size <= v.size then invalid_arg "Vect.extend";
let new_elems = Array.make new_size v.elems.(0) in
Array.blit v.elems 0 new_elems 0 (v.size);
v.elems <- new_elems
let push v a =
extend v;
v.elems.(v.size) <- a;
v.size <- v.size + 1
let popn v n =
v.size <- max 0 (v.size - n)
let pop v = popn v 1
let get_last v n =
if v.size <= n then invalid_arg "Vect.get:index out of bounds";
v.elems.(v.size - n - 1)
end
let empty_args = [||]
module Renv =
struct
module ConstrHash =
struct
type t = constructor
let equal = eq_constructor
let hash = constructor_hash
end
module ConstrTable = Hashtbl.Make(ConstrHash)
type constructor_info = tag * int * int (* nparam nrealargs *)
type t = {
name_rel : Name.t Vect.t;
construct_tbl : constructor_info ConstrTable.t;
}
let make () = {
name_rel = Vect.make 16 Anonymous;
construct_tbl = ConstrTable.create 111
}
let push_rel env id = Vect.push env.name_rel id
let push_rels env ids =
Array.iter (push_rel env) ids
let pop env = Vect.pop env.name_rel
let popn env n =
for _i = 1 to n do pop env done
let get env n =
Lrel (Vect.get_last env.name_rel (n-1), n)
let get_construct_info env c =
try ConstrTable.find env.construct_tbl c
with Not_found ->
let ((mind,j), i) = c in
let oib = lookup_mind mind !global_env in
let oip = oib.mind_packets.(j) in
let tag,arity = oip.mind_reloc_tbl.(i-1) in
let nparams = oib.mind_nparams in
let r = (tag, nparams, arity) in
ConstrTable.add env.construct_tbl c r;
r
end
(* What about pattern matching ?*)
let is_lazy prefix t =
match kind t with
| App (f,args) ->
begin match kind f with
| Construct (c,_) ->
let entry = mkInd (fst c) in
(try
let _ =
Retroknowledge.get_native_before_match_info (!global_env).retroknowledge
entry prefix c Llazy;
in
false
with Not_found -> true)
| _ -> true
end
| LetIn _ -> true
| _ -> false
let evar_value sigma ev = sigma.evars_val ev
let evar_type sigma ev = sigma.evars_typ ev
let meta_type sigma mv = sigma.evars_metas mv
let empty_evars =
{ evars_val = (fun _ -> None);
evars_typ = (fun _ -> assert false);
evars_metas = (fun _ -> assert false) }
let empty_ids = [||]
let rec lambda_of_constr env sigma c =
match kind c with
| Meta mv ->
let ty = meta_type sigma mv in
Lmeta (mv, lambda_of_constr env sigma ty)
| Evar (evk,args as ev) ->
(match evar_value sigma ev with
| None ->
let ty = evar_type sigma ev in
let args = Array.map (lambda_of_constr env sigma) args in
Levar(evk, lambda_of_constr env sigma ty, args)
| Some t -> lambda_of_constr env sigma t)
| Cast (c, _, _) -> lambda_of_constr env sigma c
| Rel i -> Renv.get env i
| Var id -> Lvar id
| Sort s -> Lsort s
| Ind (ind,u as pind) ->
let prefix = get_mind_prefix !global_env (fst ind) in
Lind (prefix, pind)
| Prod(id, dom, codom) ->
let ld = lambda_of_constr env sigma dom in
Renv.push_rel env id;
let lc = lambda_of_constr env sigma codom in
Renv.pop env;
Lprod(ld, Llam([|id|], lc))
| Lambda _ ->
let params, body = Term.decompose_lam c in
let ids = get_names (List.rev params) in
Renv.push_rels env ids;
let lb = lambda_of_constr env sigma body in
Renv.popn env (Array.length ids);
mkLlam ids lb
| LetIn(id, def, _, body) ->
let ld = lambda_of_constr env sigma def in
Renv.push_rel env id;
let lb = lambda_of_constr env sigma body in
Renv.pop env;
Llet(id, ld, lb)
| App(f, args) -> lambda_of_app env sigma f args
| Const _ -> lambda_of_app env sigma c empty_args
| Construct _ -> lambda_of_app env sigma c empty_args
| Proj (p, c) ->
let kn = Projection.constant p in
mkLapp (Lproj (get_const_prefix !global_env kn, kn)) [|lambda_of_constr env sigma c|]
| Case(ci,t,a,branches) ->
let (mind,i as ind) = ci.ci_ind in
let mib = lookup_mind mind !global_env in
let oib = mib.mind_packets.(i) in
let tbl = oib.mind_reloc_tbl in
(* Building info *)
let prefix = get_mind_prefix !global_env mind in
let annot_sw =
{ asw_ind = ind;
asw_ci = ci;
asw_reloc = tbl;
asw_finite = mib.mind_finite <> CoFinite;
asw_prefix = prefix}
in
(* translation of the argument *)
let la = lambda_of_constr env sigma a in
let entry = mkInd ind in
let la =
try
Retroknowledge.get_native_before_match_info (!global_env).retroknowledge
entry prefix (ind,1) la
with Not_found -> la
in
(* translation of the type *)
let lt = lambda_of_constr env sigma t in
(* translation of branches *)
let mk_branch i b =
let cn = (ind,i+1) in
let _, arity = tbl.(i) in
let b = lambda_of_constr env sigma b in
if Int.equal arity 0 then (cn, empty_ids, b)
else
match b with
| Llam(ids, body) when Int.equal (Array.length ids) arity -> (cn, ids, body)
| _ ->
let ids = Array.make arity Anonymous in
let args = make_args arity 1 in
let ll = lam_lift arity b in
(cn, ids, mkLapp ll args) in
let bs = Array.mapi mk_branch branches in
Lcase(annot_sw, lt, la, bs)
| Fix(rec_init,(names,type_bodies,rec_bodies)) ->
let ltypes = lambda_of_args env sigma 0 type_bodies in
Renv.push_rels env names;
let lbodies = lambda_of_args env sigma 0 rec_bodies in
Renv.popn env (Array.length names);
Lfix(rec_init, (names, ltypes, lbodies))
| CoFix(init,(names,type_bodies,rec_bodies)) ->
let rec_bodies = Array.map2 (Hook.get Clambda.eta_expand !global_env) rec_bodies type_bodies in
let ltypes = lambda_of_args env sigma 0 type_bodies in
Renv.push_rels env names;
let lbodies = lambda_of_args env sigma 0 rec_bodies in
Renv.popn env (Array.length names);
Lcofix(init, (names, ltypes, lbodies))
and lambda_of_app env sigma f args =
match kind f with
| Const (kn,u as c) ->
let kn,u = get_alias !global_env c in
let cb = lookup_constant kn !global_env in
(try
let prefix = get_const_prefix !global_env kn in
(* We delay the compilation of arguments to avoid an exponential behavior *)
let f = Retroknowledge.get_native_compiling_info
(!global_env).retroknowledge (mkConst kn) prefix in
let args = lambda_of_args env sigma 0 args in
f args
with Not_found ->
begin match cb.const_body with
| Def csubst -> (* TODO optimize if f is a proj and argument is known *)
if cb.const_inline_code then
lambda_of_app env sigma (Mod_subst.force_constr csubst) args
else
let prefix = get_const_prefix !global_env kn in
let t =
if is_lazy prefix (Mod_subst.force_constr csubst) then
mkLapp Lforce [|Lconst (prefix, (kn,u))|]
else Lconst (prefix, (kn,u))
in
mkLapp t (lambda_of_args env sigma 0 args)
| OpaqueDef _ | Undef _ ->
let prefix = get_const_prefix !global_env kn in
mkLapp (Lconst (prefix, (kn,u))) (lambda_of_args env sigma 0 args)
end)
| Construct (c,u) ->
let tag, nparams, arity = Renv.get_construct_info env c in
let expected = nparams + arity in
let nargs = Array.length args in
let prefix = get_mind_prefix !global_env (fst (fst c)) in
if Int.equal nargs expected then
try
try
Retroknowledge.get_native_constant_static_info
(!global_env).retroknowledge
f args
with NotClosed ->
assert (Int.equal nparams 0); (* should be fine for int31 *)
let args = lambda_of_args env sigma nparams args in
Retroknowledge.get_native_constant_dynamic_info
(!global_env).retroknowledge f prefix c args
with Not_found ->
let args = lambda_of_args env sigma nparams args in
makeblock !global_env c u tag args
else
let args = lambda_of_args env sigma 0 args in
(try
Retroknowledge.get_native_constant_dynamic_info
(!global_env).retroknowledge f prefix c args
with Not_found ->
mkLapp (Lconstruct (prefix, (c,u))) args)
| _ ->
let f = lambda_of_constr env sigma f in
let args = lambda_of_args env sigma 0 args in
mkLapp f args
and lambda_of_args env sigma start args =
let nargs = Array.length args in
if start < nargs then
Array.init (nargs - start)
(fun i -> lambda_of_constr env sigma args.(start + i))
else empty_args
let optimize lam =
let lam = simplify subst_id lam in
(* if Flags.vm_draw_opt () then
(msgerrnl (str "Simplify = \n" ++ pp_lam lam);flush_all());
let lam = remove_let subst_id lam in
if Flags.vm_draw_opt () then
(msgerrnl (str "Remove let = \n" ++ pp_lam lam);flush_all()); *)
lam
let lambda_of_constr env sigma c =
set_global_env env;
let env = Renv.make () in
let ids = List.rev_map RelDecl.get_name !global_env.env_rel_context.env_rel_ctx in
Renv.push_rels env (Array.of_list ids);
let lam = lambda_of_constr env sigma c in
(* if Flags.vm_draw_opt () then begin
(msgerrnl (str "Constr = \n" ++ pr_constr c);flush_all());
(msgerrnl (str "Lambda = \n" ++ pp_lam lam);flush_all());
end; *)
optimize lam
let mk_lazy c =
mkLapp Llazy [|c|]
(** Retroknowledge, to be removed once we move to primitive machine integers *)
let compile_static_int31 fc args =
if not fc then raise Not_found else
Luint (UintVal
(Uint31.of_int (Array.fold_left
(fun temp_i -> fun t -> match kind t with
| Construct ((_,d),_) -> 2*temp_i+d-1
| _ -> raise NotClosed)
0 args)))
let compile_dynamic_int31 fc prefix c args =
if not fc then raise Not_found else
Luint (UintDigits (prefix,c,args))
(* We are relying here on the order of digits constructors *)
let digits_from_uint digits_ind prefix i =
let d0 = Lconstruct (prefix, ((digits_ind, 1), Univ.Instance.empty)) in
let d1 = Lconstruct (prefix, ((digits_ind, 2), Univ.Instance.empty)) in
let digits = Array.make 31 d0 in
for k = 0 to 30 do
if Int.equal ((Uint31.to_int i lsr k) land 1) 1 then
digits.(30-k) <- d1
done;
digits
let before_match_int31 digits_ind fc prefix c t =
if not fc then
raise Not_found
else
match t with
| Luint (UintVal i) ->
let digits = digits_from_uint digits_ind prefix i in
mkLapp (Lconstruct (prefix,(c, Univ.Instance.empty))) digits
| Luint (UintDigits (prefix,c,args)) ->
mkLapp (Lconstruct (prefix,(c, Univ.Instance.empty))) args
| _ -> Luint (UintDecomp (prefix,c,t))
let compile_prim prim kn fc prefix args =
if not fc then raise Not_found
else
Lprim(prefix, kn, prim, args)
|