1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Pp
open Util
(*s Identifiers *)
type identifier = string
let id_ord = Pervasives.compare
let id_of_string s = check_ident_soft s; String.copy s
let string_of_id id = String.copy id
(* Hash-consing of identifier *)
module Hident = Hashcons.Make(
struct
type t = string
type u = string -> string
let hash_sub hstr id = hstr id
let equal id1 id2 = id1 == id2
let hash = Hashtbl.hash
end)
module IdOrdered =
struct
type t = identifier
let compare = id_ord
end
module Idset = Set.Make(IdOrdered)
module Idmap = Map.Make(IdOrdered)
module Idpred = Predicate.Make(IdOrdered)
(* Names *)
type name = Name of identifier | Anonymous
(* Dirpaths are lists of module identifiers. The actual representation
is reversed to optimise sharing: Coq.A.B is ["B";"A";"Coq"] *)
type module_ident = identifier
type dir_path = module_ident list
module ModIdmap = Idmap
let make_dirpath x = x
let repr_dirpath x = x
let empty_dirpath = []
let string_of_dirpath = function
| [] -> "<>"
| sl -> String.concat "." (List.map string_of_id (List.rev sl))
let u_number = ref 0
type uniq_ident = int * string * dir_path
let make_uid dir s = incr u_number;(!u_number,String.copy s,dir)
let debug_string_of_uid (i,s,p) =
"<"(*^string_of_dirpath p ^"#"^*) ^ s ^"#"^ string_of_int i^">"
let string_of_uid (i,s,p) =
string_of_dirpath p ^"."^s
module Umap = Map.Make(struct
type t = uniq_ident
let compare = Pervasives.compare
end)
type label = string
type mod_bound_id = uniq_ident
let make_mbid = make_uid
let repr_mbid (n, id, dp) = (n, id, dp)
let debug_string_of_mbid = debug_string_of_uid
let string_of_mbid = string_of_uid
let id_of_mbid (_,s,_) = s
let label_of_mbid (_,s,_) = s
let mk_label l = l
let string_of_label = string_of_id
let id_of_label l = l
let label_of_id id = id
module Labset = Idset
module Labmap = Idmap
type module_path =
| MPfile of dir_path
| MPbound of mod_bound_id
(* | MPapp of module_path * module_path *)
| MPdot of module_path * label
let rec check_bound_mp = function
| MPbound _ -> true
| MPdot(mp,_) ->check_bound_mp mp
| _ -> false
let rec string_of_mp = function
| MPfile sl -> "MPfile (" ^ string_of_dirpath sl ^ ")"
| MPbound uid -> string_of_uid uid
(* | MPapp (mp1,mp2) ->
"("^string_of_mp mp ^ " " ^
string_of_mp mp^")"*)
| MPdot (mp,l) -> string_of_mp mp ^ "." ^ string_of_label l
(* we compare labels first if both are MPdots *)
let rec mp_ord mp1 mp2 = match (mp1,mp2) with
MPdot(mp1,l1), MPdot(mp2,l2) ->
let c = Pervasives.compare l1 l2 in
if c<>0 then
c
else
mp_ord mp1 mp2
| _,_ -> Pervasives.compare mp1 mp2
module MPord = struct
type t = module_path
let compare = mp_ord
end
module MPset = Set.Make(MPord)
module MPmap = Map.Make(MPord)
(* Kernel names *)
type kernel_name = module_path * dir_path * label
let make_kn mp dir l = (mp,dir,l)
let repr_kn kn = kn
let modpath kn =
let mp,_,_ = repr_kn kn in mp
let label kn =
let _,_,l = repr_kn kn in l
let string_of_kn (mp,dir,l) =
string_of_mp mp ^ "#" ^ string_of_dirpath dir ^ "#" ^ string_of_label l
let pr_kn kn = str (string_of_kn kn)
let kn_ord kn1 kn2 =
let mp1,dir1,l1 = kn1 in
let mp2,dir2,l2 = kn2 in
let c = Pervasives.compare l1 l2 in
if c <> 0 then
c
else
let c = Pervasives.compare dir1 dir2 in
if c<>0 then
c
else
MPord.compare mp1 mp2
(* a constant name is a kernel name couple (kn1,kn2)
where kn1 corresponds to the name used at toplevel
(i.e. what the user see)
and kn2 corresponds to the canonical kernel name
i.e. in the environment we have
kn1 \rhd_{\delta}^* kn2 \rhd_{\delta} t *)
type constant = kernel_name*kernel_name
(* For the environment we distinguish constants by their
user part*)
module User_ord = struct
type t = kernel_name*kernel_name
let compare x y= kn_ord (fst x) (fst y)
end
(* For other uses (ex: non-logical things) it is enough
to deal with the canonical part *)
module Canonical_ord = struct
type t = kernel_name*kernel_name
let compare x y= kn_ord (snd x) (snd y)
end
module KNord = struct
type t = kernel_name
let compare =kn_ord
end
module KNmap = Map.Make(KNord)
module KNpred = Predicate.Make(KNord)
module KNset = Set.Make(KNord)
module Cmap = Map.Make(Canonical_ord)
module Cmap_env = Map.Make(User_ord)
module Cpred = Predicate.Make(Canonical_ord)
module Cset = Set.Make(Canonical_ord)
module Cset_env = Set.Make(User_ord)
module Mindmap = Map.Make(Canonical_ord)
module Mindset = Set.Make(Canonical_ord)
module Mindmap_env = Map.Make(User_ord)
let default_module_name = "If you see this, it's a bug"
let initial_dir = make_dirpath [default_module_name]
let initial_path = MPfile initial_dir
type variable = identifier
(* The same thing is done for mutual inductive names
it replaces also the old mind_equiv field of mutual
inductive types*)
type mutual_inductive = kernel_name*kernel_name
type inductive = mutual_inductive * int
type constructor = inductive * int
let constant_of_kn kn = (kn,kn)
let constant_of_kn_equiv kn1 kn2 = (kn1,kn2)
let make_con mp dir l = ((mp,dir,l),(mp,dir,l))
let make_con_equiv mp1 mp2 dir l = ((mp1,dir,l),(mp2,dir,l))
let canonical_con con = snd con
let user_con con = fst con
let repr_con con = fst con
let string_of_con con = string_of_kn (fst con)
let con_label con = label (fst con)
let pr_con con = pr_kn (fst con)
let debug_pr_con con = str "("++ pr_kn (fst con) ++ str ","++ pr_kn (snd con)++ str ")"
let eq_constant (_,kn1) (_,kn2) = kn1=kn2
let debug_string_of_con con = string_of_kn (fst con)^"'"^string_of_kn (snd con)
let con_modpath con = modpath (fst con)
let mind_modpath mind = modpath (fst mind)
let ind_modpath ind = mind_modpath (fst ind)
let constr_modpath c = ind_modpath (fst c)
let mind_of_kn kn = (kn,kn)
let mind_of_kn_equiv kn1 kn2 = (kn1,kn2)
let make_mind mp dir l = ((mp,dir,l),(mp,dir,l))
let make_mind_equiv mp1 mp2 dir l = ((mp1,dir,l),(mp2,dir,l))
let canonical_mind mind = snd mind
let user_mind mind = fst mind
let repr_mind mind = fst mind
let string_of_mind mind = string_of_kn (fst mind)
let mind_label mind= label (fst mind)
let pr_mind mind = pr_kn (fst mind)
let debug_pr_mind mind = str "("++ pr_kn (fst mind) ++ str ","++ pr_kn (snd mind)++ str ")"
let eq_mind (_,kn1) (_,kn2) = kn1=kn2
let debug_string_of_mind mind = string_of_kn (fst mind)^"'"^string_of_kn (snd mind)
let ith_mutual_inductive (kn,_) i = (kn,i)
let ith_constructor_of_inductive ind i = (ind,i)
let inductive_of_constructor (ind,i) = ind
let index_of_constructor (ind,i) = i
let eq_ind (kn1,i1) (kn2,i2) = i1=i2&&eq_mind kn1 kn2
let eq_constructor (kn1,i1) (kn2,i2) = i1=i2&&eq_ind kn1 kn2
module InductiveOrdered = struct
type t = inductive
let compare (spx,ix) (spy,iy) =
let c = ix - iy in if c = 0 then Canonical_ord.compare spx spy else c
end
module InductiveOrdered_env = struct
type t = inductive
let compare (spx,ix) (spy,iy) =
let c = ix - iy in if c = 0 then User_ord.compare spx spy else c
end
module Indmap = Map.Make(InductiveOrdered)
module Indmap_env = Map.Make(InductiveOrdered_env)
module ConstructorOrdered = struct
type t = constructor
let compare (indx,ix) (indy,iy) =
let c = ix - iy in if c = 0 then InductiveOrdered.compare indx indy else c
end
module ConstructorOrdered_env = struct
type t = constructor
let compare (indx,ix) (indy,iy) =
let c = ix - iy in if c = 0 then InductiveOrdered_env.compare indx indy else c
end
module Constrmap = Map.Make(ConstructorOrdered)
module Constrmap_env = Map.Make(ConstructorOrdered_env)
(* Better to have it here that in closure, since used in grammar.cma *)
type evaluable_global_reference =
| EvalVarRef of identifier
| EvalConstRef of constant
let eq_egr e1 e2 = match e1,e2 with
EvalConstRef con1, EvalConstRef con2 -> eq_constant con1 con2
| _,_ -> e1 = e2
(* Hash-consing of name objects *)
module Hname = Hashcons.Make(
struct
type t = name
type u = identifier -> identifier
let hash_sub hident = function
| Name id -> Name (hident id)
| n -> n
let equal n1 n2 =
match (n1,n2) with
| (Name id1, Name id2) -> id1 == id2
| (Anonymous,Anonymous) -> true
| _ -> false
let hash = Hashtbl.hash
end)
module Hdir = Hashcons.Make(
struct
type t = dir_path
type u = identifier -> identifier
let hash_sub hident d = List.map hident d
let rec equal d1 d2 = match (d1,d2) with
| [],[] -> true
| id1::d1,id2::d2 -> id1 == id2 & equal d1 d2
| _ -> false
let hash = Hashtbl.hash
end)
module Huniqid = Hashcons.Make(
struct
type t = uniq_ident
type u = (string -> string) * (dir_path -> dir_path)
let hash_sub (hstr,hdir) (n,s,dir) = (n,hstr s,hdir dir)
let equal (n1,s1,dir1) (n2,s2,dir2) = n1 = n2 & s1 = s2 & dir1 == dir2
let hash = Hashtbl.hash
end)
module Hmod = Hashcons.Make(
struct
type t = module_path
type u = (dir_path -> dir_path) * (uniq_ident -> uniq_ident) *
(string -> string)
let rec hash_sub (hdir,huniqid,hstr as hfuns) = function
| MPfile dir -> MPfile (hdir dir)
| MPbound m -> MPbound (huniqid m)
| MPdot (md,l) -> MPdot (hash_sub hfuns md, hstr l)
let rec equal d1 d2 = match (d1,d2) with
| MPfile dir1, MPfile dir2 -> dir1 == dir2
| MPbound m1, MPbound m2 -> m1 == m2
| MPdot (mod1,l1), MPdot (mod2,l2) -> equal mod1 mod2 & l1 = l2
| _ -> false
let hash = Hashtbl.hash
end)
module Hcn = Hashcons.Make(
struct
type t = kernel_name*kernel_name
type u = (module_path -> module_path)
* (dir_path -> dir_path) * (string -> string)
let hash_sub (hmod,hdir,hstr) ((md,dir,l),(mde,dire,le)) =
((hmod md, hdir dir, hstr l),(hmod mde, hdir dire, hstr le))
let equal ((mod1,dir1,l1),_) ((mod2,dir2,l2),_) =
mod1 == mod2 && dir1 == dir2 && l1 == l2
let hash = Hashtbl.hash
end)
let hcons_names () =
let hstring = Hashcons.simple_hcons Hashcons.Hstring.f () in
let hident = Hashcons.simple_hcons Hident.f hstring in
let hname = Hashcons.simple_hcons Hname.f hident in
let hdir = Hashcons.simple_hcons Hdir.f hident in
let huniqid = Hashcons.simple_hcons Huniqid.f (hstring,hdir) in
let hmod = Hashcons.simple_hcons Hmod.f (hdir,huniqid,hstring) in
let hmind = Hashcons.simple_hcons Hcn.f (hmod,hdir,hstring) in
let hcn = Hashcons.simple_hcons Hcn.f (hmod,hdir,hstring) in
(hcn,hmind,hdir,hname,hident,hstring)
(*******)
type transparent_state = Idpred.t * Cpred.t
let empty_transparent_state = (Idpred.empty, Cpred.empty)
let full_transparent_state = (Idpred.full, Cpred.full)
let var_full_transparent_state = (Idpred.full, Cpred.empty)
let cst_full_transparent_state = (Idpred.empty, Cpred.full)
type 'a tableKey =
| ConstKey of constant
| VarKey of identifier
| RelKey of 'a
type inv_rel_key = int (* index in the [rel_context] part of environment
starting by the end, {\em inverse}
of de Bruijn indice *)
type id_key = inv_rel_key tableKey
let eq_id_key ik1 ik2 =
match ik1,ik2 with
ConstKey (_,kn1),
ConstKey (_,kn2) -> kn1=kn2
| a,b -> a=b
let eq_con_chk (kn1,_) (kn2,_) = kn1=kn2
let eq_mind_chk (kn1,_) (kn2,_) = kn1=kn2
let eq_ind_chk (kn1,i1) (kn2,i2) = i1=i2&&eq_mind_chk kn1 kn2
|