summaryrefslogtreecommitdiff
path: root/kernel/names.ml
blob: 25f03495bd8c7b4e5a01c82a15e55318681e08ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id: names.ml 11238 2008-07-19 09:34:03Z herbelin $ *)

open Pp
open Util

(*s Identifiers *)

type identifier = string

let id_ord = Pervasives.compare

let id_of_string s = check_ident s; String.copy s

let string_of_id id = String.copy id

(* Hash-consing of identifier *)
module Hident = Hashcons.Make(
  struct 
    type t = string
    type u = string -> string
    let hash_sub hstr id = hstr id
    let equal id1 id2 = id1 == id2
    let hash = Hashtbl.hash
  end)

module IdOrdered = 
  struct
    type t = identifier
    let compare = id_ord
  end

module Idset = Set.Make(IdOrdered)
module Idmap = Map.Make(IdOrdered)
module Idpred = Predicate.Make(IdOrdered)

(* Names *)

type name = Name of identifier | Anonymous

(* Dirpaths are lists of module identifiers. The actual representation
   is reversed to optimise sharing: Coq.A.B is ["B";"A";"Coq"] *)
 
type module_ident = identifier
type dir_path = module_ident list

module ModIdOrdered = 
  struct
    type t = identifier
    let compare = Pervasives.compare
  end

module ModIdmap = Map.Make(ModIdOrdered)

let make_dirpath x = x
let repr_dirpath x = x

let empty_dirpath = []

let string_of_dirpath = function
  | [] -> "<>"
  | sl -> String.concat "." (List.map string_of_id (List.rev sl))


let u_number = ref 0 
type uniq_ident = int * string * dir_path
let make_uid dir s = incr u_number;(!u_number,String.copy s,dir)
 let debug_string_of_uid (i,s,p) =
 "<"(*^string_of_dirpath p ^"#"^*) ^ s ^"#"^ string_of_int i^">"
let string_of_uid (i,s,p) = 
  string_of_dirpath p ^"."^s

module Umap = Map.Make(struct 
			 type t = uniq_ident 
			 let compare = Pervasives.compare
		       end)

type label = string

type mod_self_id = uniq_ident
let make_msid = make_uid
let debug_string_of_msid = debug_string_of_uid
let refresh_msid (_,s,dir) = make_uid dir s
let string_of_msid = string_of_uid
let id_of_msid (_,s,_) = s
let label_of_msid (_,s,_) = s

type mod_bound_id = uniq_ident
let make_mbid = make_uid
let debug_string_of_mbid = debug_string_of_uid
let string_of_mbid = string_of_uid
let id_of_mbid (_,s,_) = s
let label_of_mbid (_,s,_) = s


let mk_label l = l
let string_of_label = string_of_id

let id_of_label l = l
let label_of_id id = id

module Labset = Idset
module Labmap = Idmap

type module_path =
  | MPfile of dir_path
  | MPbound of mod_bound_id
  | MPself of mod_self_id 
  | MPdot of module_path * label

let rec string_of_mp = function
  | MPfile sl -> string_of_dirpath sl
  | MPbound uid -> string_of_uid uid
  | MPself uid -> string_of_uid uid
  | MPdot (mp,l) -> string_of_mp mp ^ "." ^ string_of_label l

(* we compare labels first if both are MPdots *)
let rec mp_ord mp1 mp2 = match (mp1,mp2) with
    MPdot(mp1,l1), MPdot(mp2,l2) -> 
      let c = Pervasives.compare l1 l2 in
	if c<>0 then
	  c
	else
	  mp_ord mp1 mp2
  |  _,_ -> Pervasives.compare mp1 mp2

module MPord = struct
  type t = module_path
  let compare = mp_ord
end

module MPset = Set.Make(MPord)
module MPmap = Map.Make(MPord)

(* Kernel names *)

type kernel_name = module_path * dir_path * label

let make_kn mp dir l = (mp,dir,l)
let repr_kn kn = kn

let modpath kn = 
  let mp,_,_ = repr_kn kn in mp

let label kn = 
  let _,_,l = repr_kn kn in l

let string_of_kn (mp,dir,l) = 
  string_of_mp mp ^ "#" ^ string_of_dirpath dir ^ "#" ^ string_of_label l

let pr_kn kn = str (string_of_kn kn)


let kn_ord kn1 kn2 = 
    let mp1,dir1,l1 = kn1 in
    let mp2,dir2,l2 = kn2 in
    let c = Pervasives.compare l1 l2 in
      if c <> 0 then
	c
      else 
	let c = Pervasives.compare dir1 dir2 in
	  if c<>0 then
	    c 
	  else
	    MPord.compare mp1 mp2


module KNord = struct
  type t = kernel_name
  let compare =kn_ord
end

module KNmap = Map.Make(KNord)
module KNpred = Predicate.Make(KNord)
module KNset = Set.Make(KNord)
module Cmap = KNmap
module Cpred = KNpred
module Cset = KNset

let default_module_name = "If you see this, it's a bug"

let initial_dir = make_dirpath [default_module_name]

let initial_msid = (make_msid initial_dir "If you see this, it's a bug")
let initial_path = MPself initial_msid

type variable = identifier
type constant = kernel_name
type mutual_inductive = kernel_name
type inductive = mutual_inductive * int
type constructor = inductive * int

let constant_of_kn kn = kn
let make_con mp dir l = (mp,dir,l)
let repr_con con = con
let string_of_con = string_of_kn
let con_label = label
let pr_con = pr_kn
let con_modpath = modpath

let mind_modpath = modpath
let ind_modpath ind = mind_modpath (fst ind)
let constr_modpath c = ind_modpath (fst c)

let ith_mutual_inductive (kn,_) i = (kn,i)
let ith_constructor_of_inductive ind i = (ind,i)
let inductive_of_constructor (ind,i) = ind
let index_of_constructor (ind,i) = i

module InductiveOrdered = struct
  type t = inductive
  let compare (spx,ix) (spy,iy) = 
    let c = ix - iy in if c = 0 then KNord.compare spx spy else c
end

module Indmap = Map.Make(InductiveOrdered)

module ConstructorOrdered = struct
  type t = constructor
  let compare (indx,ix) (indy,iy) = 
    let c = ix - iy in if c = 0 then InductiveOrdered.compare indx indy else c
end

module Constrmap = Map.Make(ConstructorOrdered)

(* Better to have it here that in closure, since used in grammar.cma *)
type evaluable_global_reference =
  | EvalVarRef of identifier
  | EvalConstRef of constant

(* Hash-consing of name objects *)
module Hname = Hashcons.Make(
  struct 
    type t = name
    type u = identifier -> identifier
    let hash_sub hident = function
      | Name id -> Name (hident id)
      | n -> n
    let equal n1 n2 =
      match (n1,n2) with
	| (Name id1, Name id2) -> id1 == id2
        | (Anonymous,Anonymous) -> true
        | _ -> false
    let hash = Hashtbl.hash
  end)

module Hdir = Hashcons.Make(
  struct 
    type t = dir_path
    type u = identifier -> identifier
    let hash_sub hident d = List.map hident d
    let rec equal d1 d2 = match (d1,d2) with
      | [],[] -> true
      | id1::d1,id2::d2 -> id1 == id2 & equal d1 d2
      | _ -> false
    let hash = Hashtbl.hash
  end)

module Huniqid = Hashcons.Make(
  struct 
    type t = uniq_ident
    type u = (string -> string) * (dir_path -> dir_path)
    let hash_sub (hstr,hdir) (n,s,dir) = (n,hstr s,hdir dir)
    let equal (n1,s1,dir1) (n2,s2,dir2) = n1 = n2 & s1 = s2 & dir1 == dir2
    let hash = Hashtbl.hash
  end)

module Hmod = Hashcons.Make(
  struct 
    type t = module_path
    type u = (dir_path -> dir_path) * (uniq_ident -> uniq_ident) *
	(string -> string)
    let rec hash_sub (hdir,huniqid,hstr as hfuns) = function
      | MPfile dir -> MPfile (hdir dir)
      | MPbound m -> MPbound (huniqid m)
      | MPself m -> MPself (huniqid m)
      | MPdot (md,l) -> MPdot (hash_sub hfuns md, hstr l)
    let rec equal d1 d2 = match (d1,d2) with
      | MPfile dir1, MPfile dir2 -> dir1 == dir2
      | MPbound m1, MPbound m2 -> m1 == m2
      | MPself m1, MPself m2 -> m1 == m2
      | MPdot (mod1,l1), MPdot (mod2,l2) -> equal mod1 mod2 & l1 = l2
      | _ -> false
    let hash = Hashtbl.hash
  end)

module Hkn = Hashcons.Make(
  struct 
    type t = kernel_name
    type u = (module_path -> module_path)
	* (dir_path -> dir_path) * (string -> string)
    let hash_sub (hmod,hdir,hstr) (md,dir,l) = (hmod md, hdir dir, hstr l)
    let equal (mod1,dir1,l1) (mod2,dir2,l2) =
      mod1 == mod2 && dir1 == dir2 && l1 == l2
    let hash = Hashtbl.hash
  end)

let hcons_names () =
  let hstring = Hashcons.simple_hcons Hashcons.Hstring.f () in
  let hident = Hashcons.simple_hcons Hident.f hstring in
  let hname = Hashcons.simple_hcons Hname.f hident in
  let hdir = Hashcons.simple_hcons Hdir.f hident in
  let huniqid = Hashcons.simple_hcons Huniqid.f (hstring,hdir) in
  let hmod = Hashcons.simple_hcons Hmod.f (hdir,huniqid,hstring) in
  let hkn = Hashcons.simple_hcons Hkn.f (hmod,hdir,hstring) in
  (hkn,hkn,hdir,hname,hident,hstring)


(*******)

type transparent_state = Idpred.t * Cpred.t

let empty_transparent_state = (Idpred.empty, Cpred.empty)
let full_transparent_state = (Idpred.full, Cpred.full)
let var_full_transparent_state = (Idpred.full, Cpred.empty)
let cst_full_transparent_state = (Idpred.empty, Cpred.full)

type 'a tableKey =
  | ConstKey of constant
  | VarKey of identifier
  | RelKey of 'a 


type inv_rel_key = int (* index in the [rel_context] part of environment
			  starting by the end, {\em inverse} 
			  of de Bruijn indice *)

type id_key = inv_rel_key tableKey