1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Author: Jean-Christophe Filliâtre as part of the rebuilding of Coq
around a purely functional abstract type-checker, Aug 1999 *)
(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)
(* Flag for predicativity of Set by Hugo Herbelin in Oct 2003 *)
(* Support for virtual machine by Benjamin Grégoire in Oct 2004 *)
(* Support for retroknowledge by Arnaud Spiwack in May 2007 *)
(* Support for assumption dependencies by Arnaud Spiwack in May 2007 *)
(* Miscellaneous maintenance by Bruno Barras, Hugo Herbelin, Jean-Marc
Notin, Matthieu Sozeau *)
(* This file defines the type of environments on which the
type-checker works, together with simple related functions *)
open Errors
open Util
open Names
open Term
open Context
open Vars
open Declarations
open Pre_env
(* The type of environments. *)
type named_context_val = Pre_env.named_context_val
type env = Pre_env.env
let pre_env env = env
let env_of_pre_env env = env
let oracle env = env.env_conv_oracle
let set_oracle env o = { env with env_conv_oracle = o }
let empty_named_context_val = empty_named_context_val
let empty_env = empty_env
let engagement env = env.env_stratification.env_engagement
let is_impredicative_set env =
match fst (engagement env) with
| ImpredicativeSet -> true
| _ -> false
let type_in_type env =
match snd (engagement env) with
| TypeInType -> true
| _ -> false
let universes env = env.env_stratification.env_universes
let named_context env = env.env_named_context
let named_context_val env = env.env_named_context,env.env_named_vals
let rel_context env = env.env_rel_context
let opaque_tables env = env.indirect_pterms
let set_opaque_tables env indirect_pterms = { env with indirect_pterms }
let empty_context env =
match env.env_rel_context, env.env_named_context with
| [], [] -> true
| _ -> false
(* Rel context *)
let lookup_rel n env =
lookup_rel n env.env_rel_context
let evaluable_rel n env =
match lookup_rel n env with
| (_,Some _,_) -> true
| _ -> false
let nb_rel env = env.env_nb_rel
let push_rel = push_rel
let push_rel_context ctxt x = Context.fold_rel_context push_rel ctxt ~init:x
let push_rec_types (lna,typarray,_) env =
let ctxt = Array.map2_i (fun i na t -> (na, None, lift i t)) lna typarray in
Array.fold_left (fun e assum -> push_rel assum e) env ctxt
let fold_rel_context f env ~init =
let rec fold_right env =
match env.env_rel_context with
| [] -> init
| rd::rc ->
let env =
{ env with
env_rel_context = rc;
env_rel_val = List.tl env.env_rel_val;
env_nb_rel = env.env_nb_rel - 1 } in
f env rd (fold_right env)
in fold_right env
(* Named context *)
let named_context_of_val = fst
let named_vals_of_val = snd
(* [map_named_val f ctxt] apply [f] to the body and the type of
each declarations.
*** /!\ *** [f t] should be convertible with t *)
let map_named_val f (ctxt,ctxtv) =
let rec map ctx = match ctx with
| [] -> []
| (id, body, typ) :: rem ->
let body' = Option.smartmap f body in
let typ' = f typ in
let rem' = map rem in
if body' == body && typ' == typ && rem' == rem then ctx
else (id, body', typ') :: rem'
in
(map ctxt, ctxtv)
let empty_named_context = empty_named_context
let push_named = push_named
let push_named_context = List.fold_right push_named
let push_named_context_val = push_named_context_val
let val_of_named_context ctxt =
List.fold_right push_named_context_val ctxt empty_named_context_val
let lookup_named id env = Context.lookup_named id env.env_named_context
let lookup_named_val id (ctxt,_) = Context.lookup_named id ctxt
let eq_named_context_val c1 c2 =
c1 == c2 || named_context_equal (named_context_of_val c1) (named_context_of_val c2)
(* A local const is evaluable if it is defined *)
let named_type id env =
let (_,_,t) = lookup_named id env in t
let named_body id env =
let (_,b,_) = lookup_named id env in b
let evaluable_named id env =
match named_body id env with
| Some _ -> true
| _ -> false
let reset_with_named_context (ctxt,ctxtv) env =
{ env with
env_named_context = ctxt;
env_named_vals = ctxtv;
env_rel_context = empty_rel_context;
env_rel_val = [];
env_nb_rel = 0 }
let reset_context = reset_with_named_context empty_named_context_val
let pop_rel_context n env =
let ctxt = env.env_rel_context in
{ env with
env_rel_context = List.skipn n ctxt;
env_nb_rel = env.env_nb_rel - n }
let fold_named_context f env ~init =
let rec fold_right env =
match env.env_named_context with
| [] -> init
| d::ctxt ->
let env =
reset_with_named_context (ctxt,List.tl env.env_named_vals) env in
f env d (fold_right env)
in fold_right env
let fold_named_context_reverse f ~init env =
Context.fold_named_context_reverse f ~init:init (named_context env)
(* Universe constraints *)
let map_universes f env =
let s = env.env_stratification in
{ env with env_stratification =
{ s with env_universes = f s.env_universes } }
let add_constraints c env =
if Univ.Constraint.is_empty c then env
else map_universes (Univ.merge_constraints c) env
let check_constraints c env =
Univ.check_constraints c env.env_stratification.env_universes
let push_constraints_to_env (_,univs) env =
add_constraints univs env
let add_universes strict ctx g =
let g = Array.fold_left
(* Be lenient, module typing reintroduces universes and constraints due to includes *)
(fun g v -> try Univ.add_universe v strict g with Univ.AlreadyDeclared -> g)
g (Univ.Instance.to_array (Univ.UContext.instance ctx))
in
Univ.merge_constraints (Univ.UContext.constraints ctx) g
let push_context ?(strict=false) ctx env =
map_universes (add_universes strict ctx) env
let add_universes_set strict ctx g =
let g = Univ.LSet.fold
(fun v g -> try Univ.add_universe v strict g with Univ.AlreadyDeclared -> g)
(Univ.ContextSet.levels ctx) g
in Univ.merge_constraints (Univ.ContextSet.constraints ctx) g
let push_context_set ?(strict=false) ctx env =
map_universes (add_universes_set strict ctx) env
let set_engagement c env = (* Unsafe *)
{ env with env_stratification =
{ env.env_stratification with env_engagement = c } }
(* Global constants *)
let lookup_constant = lookup_constant
let no_link_info = NotLinked
let add_constant_key kn cb linkinfo env =
let new_constants =
Cmap_env.add kn (cb,(ref linkinfo, ref None)) env.env_globals.env_constants in
let new_globals =
{ env.env_globals with
env_constants = new_constants } in
{ env with env_globals = new_globals }
let add_constant kn cb env =
add_constant_key kn cb no_link_info env
let constraints_of cb u =
let univs = cb.const_universes in
Univ.subst_instance_constraints u (Univ.UContext.constraints univs)
let map_regular_arity f = function
| RegularArity a as ar ->
let a' = f a in
if a' == a then ar else RegularArity a'
| TemplateArity _ -> assert false
(* constant_type gives the type of a constant *)
let constant_type env (kn,u) =
let cb = lookup_constant kn env in
if cb.const_polymorphic then
let csts = constraints_of cb u in
(map_regular_arity (subst_instance_constr u) cb.const_type, csts)
else cb.const_type, Univ.Constraint.empty
let constant_context env kn =
let cb = lookup_constant kn env in
if cb.const_polymorphic then cb.const_universes
else Univ.UContext.empty
type const_evaluation_result = NoBody | Opaque | IsProj
exception NotEvaluableConst of const_evaluation_result
let constant_value env (kn,u) =
let cb = lookup_constant kn env in
if cb.const_proj = None then
match cb.const_body with
| Def l_body ->
if cb.const_polymorphic then
let csts = constraints_of cb u in
(subst_instance_constr u (Mod_subst.force_constr l_body), csts)
else Mod_subst.force_constr l_body, Univ.Constraint.empty
| OpaqueDef _ -> raise (NotEvaluableConst Opaque)
| Undef _ -> raise (NotEvaluableConst NoBody)
else raise (NotEvaluableConst IsProj)
let constant_opt_value env cst =
try Some (constant_value env cst)
with NotEvaluableConst _ -> None
let constant_value_and_type env (kn, u) =
let cb = lookup_constant kn env in
if cb.const_polymorphic then
let cst = constraints_of cb u in
let b' = match cb.const_body with
| Def l_body -> Some (subst_instance_constr u (Mod_subst.force_constr l_body))
| OpaqueDef _ -> None
| Undef _ -> None
in
b', map_regular_arity (subst_instance_constr u) cb.const_type, cst
else
let b' = match cb.const_body with
| Def l_body -> Some (Mod_subst.force_constr l_body)
| OpaqueDef _ -> None
| Undef _ -> None
in b', cb.const_type, Univ.Constraint.empty
(* These functions should be called under the invariant that [env]
already contains the constraints corresponding to the constant
application. *)
(* constant_type gives the type of a constant *)
let constant_type_in env (kn,u) =
let cb = lookup_constant kn env in
if cb.const_polymorphic then
map_regular_arity (subst_instance_constr u) cb.const_type
else cb.const_type
let constant_value_in env (kn,u) =
let cb = lookup_constant kn env in
match cb.const_body with
| Def l_body ->
let b = Mod_subst.force_constr l_body in
subst_instance_constr u b
| OpaqueDef _ -> raise (NotEvaluableConst Opaque)
| Undef _ -> raise (NotEvaluableConst NoBody)
let constant_opt_value_in env cst =
try Some (constant_value_in env cst)
with NotEvaluableConst _ -> None
(* A global const is evaluable if it is defined and not opaque *)
let evaluable_constant kn env =
let cb = lookup_constant kn env in
match cb.const_body with
| Def _ -> true
| OpaqueDef _ -> false
| Undef _ -> false
let polymorphic_constant cst env =
(lookup_constant cst env).const_polymorphic
let polymorphic_pconstant (cst,u) env =
if Univ.Instance.is_empty u then false
else polymorphic_constant cst env
let template_polymorphic_constant cst env =
match (lookup_constant cst env).const_type with
| TemplateArity _ -> true
| RegularArity _ -> false
let template_polymorphic_pconstant (cst,u) env =
if not (Univ.Instance.is_empty u) then false
else template_polymorphic_constant cst env
let lookup_projection cst env =
match (lookup_constant (Projection.constant cst) env).const_proj with
| Some pb -> pb
| None -> anomaly (Pp.str "lookup_projection: constant is not a projection")
let is_projection cst env =
match (lookup_constant cst env).const_proj with
| Some _ -> true
| None -> false
(* Mutual Inductives *)
let lookup_mind = lookup_mind
let polymorphic_ind (mind,i) env =
(lookup_mind mind env).mind_polymorphic
let polymorphic_pind (ind,u) env =
if Univ.Instance.is_empty u then false
else polymorphic_ind ind env
let template_polymorphic_ind (mind,i) env =
match (lookup_mind mind env).mind_packets.(i).mind_arity with
| TemplateArity _ -> true
| RegularArity _ -> false
let template_polymorphic_pind (ind,u) env =
if not (Univ.Instance.is_empty u) then false
else template_polymorphic_ind ind env
let add_mind_key kn mind_key env =
let new_inds = Mindmap_env.add kn mind_key env.env_globals.env_inductives in
let new_globals =
{ env.env_globals with
env_inductives = new_inds } in
{ env with env_globals = new_globals }
let add_mind kn mib env =
let li = ref no_link_info in add_mind_key kn (mib, li) env
(* Lookup of section variables *)
let lookup_constant_variables c env =
let cmap = lookup_constant c env in
Context.vars_of_named_context cmap.const_hyps
let lookup_inductive_variables (kn,i) env =
let mis = lookup_mind kn env in
Context.vars_of_named_context mis.mind_hyps
let lookup_constructor_variables (ind,_) env =
lookup_inductive_variables ind env
(* Returns the list of global variables in a term *)
let vars_of_global env constr =
match kind_of_term constr with
Var id -> Id.Set.singleton id
| Const (kn, _) -> lookup_constant_variables kn env
| Ind (ind, _) -> lookup_inductive_variables ind env
| Construct (cstr, _) -> lookup_constructor_variables cstr env
(** FIXME: is Proj missing? *)
| _ -> raise Not_found
let global_vars_set env constr =
let rec filtrec acc c =
let acc =
match kind_of_term c with
| Var _ | Const _ | Ind _ | Construct _ ->
Id.Set.union (vars_of_global env c) acc
| _ ->
acc in
fold_constr filtrec acc c
in
filtrec Id.Set.empty constr
(* [keep_hyps env ids] keeps the part of the section context of [env] which
contains the variables of the set [ids], and recursively the variables
contained in the types of the needed variables. *)
let really_needed env needed =
Context.fold_named_context_reverse
(fun need (id,copt,t) ->
if Id.Set.mem id need then
let globc =
match copt with
| None -> Id.Set.empty
| Some c -> global_vars_set env c in
Id.Set.union
(global_vars_set env t)
(Id.Set.union globc need)
else need)
~init:needed
(named_context env)
let keep_hyps env needed =
let really_needed = really_needed env needed in
Context.fold_named_context
(fun (id,_,_ as d) nsign ->
if Id.Set.mem id really_needed then add_named_decl d nsign
else nsign)
(named_context env)
~init:empty_named_context
(* Modules *)
let add_modtype mtb env =
let mp = mtb.mod_mp in
let new_modtypes = MPmap.add mp mtb env.env_globals.env_modtypes in
let new_globals = { env.env_globals with env_modtypes = new_modtypes } in
{ env with env_globals = new_globals }
let shallow_add_module mb env =
let mp = mb.mod_mp in
let new_mods = MPmap.add mp mb env.env_globals.env_modules in
let new_globals = { env.env_globals with env_modules = new_mods } in
{ env with env_globals = new_globals }
let lookup_module mp env =
MPmap.find mp env.env_globals.env_modules
let lookup_modtype mp env =
MPmap.find mp env.env_globals.env_modtypes
(*s Judgments. *)
type unsafe_judgment = {
uj_val : constr;
uj_type : types }
let make_judge v tj =
{ uj_val = v;
uj_type = tj }
let j_val j = j.uj_val
let j_type j = j.uj_type
type unsafe_type_judgment = {
utj_val : constr;
utj_type : sorts }
(*s Compilation of global declaration *)
let compile_constant_body = Cbytegen.compile_constant_body false
exception Hyp_not_found
let apply_to_hyp (ctxt,vals) id f =
let rec aux rtail ctxt vals =
match ctxt, vals with
| (idc,c,ct as d)::ctxt, v::vals ->
if Id.equal idc id then
(f ctxt d rtail)::ctxt, v::vals
else
let ctxt',vals' = aux (d::rtail) ctxt vals in
d::ctxt', v::vals'
| [],[] -> raise Hyp_not_found
| _, _ -> assert false
in aux [] ctxt vals
let apply_to_hyp_and_dependent_on (ctxt,vals) id f g =
let rec aux ctxt vals =
match ctxt,vals with
| (idc,c,ct as d)::ctxt, v::vals ->
if Id.equal idc id then
let sign = ctxt,vals in
push_named_context_val (f d sign) sign
else
let (ctxt,vals as sign) = aux ctxt vals in
push_named_context_val (g d sign) sign
| [],[] -> raise Hyp_not_found
| _,_ -> assert false
in aux ctxt vals
let insert_after_hyp (ctxt,vals) id d check =
let rec aux ctxt vals =
match ctxt, vals with
| (idc,c,ct)::ctxt', v::vals' ->
if Id.equal idc id then begin
check ctxt;
push_named_context_val d (ctxt,vals)
end else
let ctxt,vals = aux ctxt vals in
d::ctxt, v::vals
| [],[] -> raise Hyp_not_found
| _, _ -> assert false
in aux ctxt vals
(* To be used in Logic.clear_hyps *)
let remove_hyps ids check_context check_value (ctxt, vals) =
let rec remove_hyps ctxt vals = match ctxt, vals with
| [], [] -> [], []
| d :: rctxt, (nid, v) :: rvals ->
let (id, _, _) = d in
let ans = remove_hyps rctxt rvals in
if Id.Set.mem id ids then ans
else
let (rctxt', rvals') = ans in
let d' = check_context d in
let v' = check_value v in
if d == d' && v == v' && rctxt == rctxt' && rvals == rvals' then
ctxt, vals
else (d' :: rctxt', (nid, v') :: rvals')
| _ -> assert false
in
remove_hyps ctxt vals
(*spiwack: the following functions assemble the pieces of the retroknowledge
note that the "consistent" register function is available in the module
Safetyping, Environ only synchronizes the proactive and the reactive parts*)
open Retroknowledge
(* lifting of the "get" functions works also for "mem"*)
let retroknowledge f env =
f env.retroknowledge
let registered env field =
retroknowledge mem env field
let register_one env field entry =
{ env with retroknowledge = Retroknowledge.add_field env.retroknowledge field entry }
(* [register env field entry] may register several fields when needed *)
let register env field entry =
match field with
| KInt31 (grp, Int31Type) ->
let i31c = match kind_of_term entry with
| Ind i31t -> mkConstructUi (i31t, 1)
| _ -> anomaly ~label:"Environ.register" (Pp.str "should be an inductive type")
in
register_one (register_one env (KInt31 (grp,Int31Constructor)) i31c) field entry
| field -> register_one env field entry
(* the Environ.register function syncrhonizes the proactive and reactive
retroknowledge. *)
let dispatch =
(* subfunction used for static decompilation of int31 (after a vm_compute,
see pretyping/vnorm.ml for more information) *)
let constr_of_int31 =
let nth_digit_plus_one i n = (* calculates the nth (starting with 0)
digit of i and adds 1 to it
(nth_digit_plus_one 1 3 = 2) *)
if Int.equal (i land (1 lsl n)) 0 then
1
else
2
in
fun ind -> fun digit_ind -> fun tag ->
let array_of_int i =
Array.init 31 (fun n -> mkConstruct
(digit_ind, nth_digit_plus_one i (30-n)))
in
mkApp(mkConstruct(ind, 1), array_of_int tag)
in
(* subfunction which dispatches the compiling information of an
int31 operation which has a specific vm instruction (associates
it to the name of the coq definition in the reactive retroknowledge) *)
let int31_op n op prim kn =
{ empty_reactive_info with
vm_compiling = Some (Cbytegen.op_compilation n op kn);
native_compiling = Some (Nativelambda.compile_prim prim (Univ.out_punivs kn));
}
in
fun rk value field ->
(* subfunction which shortens the (very common) dispatch of operations *)
let int31_op_from_const n op prim =
match kind_of_term value with
| Const kn -> int31_op n op prim kn
| _ -> anomaly ~label:"Environ.register" (Pp.str "should be a constant")
in
let int31_binop_from_const op prim = int31_op_from_const 2 op prim in
let int31_unop_from_const op prim = int31_op_from_const 1 op prim in
match field with
| KInt31 (grp, Int31Type) ->
let int31bit =
(* invariant : the type of bits is registered, otherwise the function
would raise Not_found. The invariant is enforced in safe_typing.ml *)
match field with
| KInt31 (grp, Int31Type) -> Retroknowledge.find rk (KInt31 (grp,Int31Bits))
| _ -> anomaly ~label:"Environ.register"
(Pp.str "add_int31_decompilation_from_type called with an abnormal field")
in
let i31bit_type =
match kind_of_term int31bit with
| Ind (i31bit_type,_) -> i31bit_type
| _ -> anomaly ~label:"Environ.register"
(Pp.str "Int31Bits should be an inductive type")
in
let int31_decompilation =
match kind_of_term value with
| Ind (i31t,_) ->
constr_of_int31 i31t i31bit_type
| _ -> anomaly ~label:"Environ.register"
(Pp.str "should be an inductive type")
in
{ empty_reactive_info with
vm_decompile_const = Some int31_decompilation;
vm_before_match = Some Cbytegen.int31_escape_before_match;
native_before_match = Some (Nativelambda.before_match_int31 i31bit_type);
}
| KInt31 (_, Int31Constructor) ->
{ empty_reactive_info with
vm_constant_static = Some Cbytegen.compile_structured_int31;
vm_constant_dynamic = Some Cbytegen.dynamic_int31_compilation;
native_constant_static = Some Nativelambda.compile_static_int31;
native_constant_dynamic = Some Nativelambda.compile_dynamic_int31;
}
| KInt31 (_, Int31Plus) -> int31_binop_from_const Cbytecodes.Kaddint31
Primitives.Int31add
| KInt31 (_, Int31PlusC) -> int31_binop_from_const Cbytecodes.Kaddcint31
Primitives.Int31addc
| KInt31 (_, Int31PlusCarryC) -> int31_binop_from_const Cbytecodes.Kaddcarrycint31
Primitives.Int31addcarryc
| KInt31 (_, Int31Minus) -> int31_binop_from_const Cbytecodes.Ksubint31
Primitives.Int31sub
| KInt31 (_, Int31MinusC) -> int31_binop_from_const Cbytecodes.Ksubcint31
Primitives.Int31subc
| KInt31 (_, Int31MinusCarryC) -> int31_binop_from_const
Cbytecodes.Ksubcarrycint31 Primitives.Int31subcarryc
| KInt31 (_, Int31Times) -> int31_binop_from_const Cbytecodes.Kmulint31
Primitives.Int31mul
| KInt31 (_, Int31TimesC) -> int31_binop_from_const Cbytecodes.Kmulcint31
Primitives.Int31mulc
| KInt31 (_, Int31Div21) -> int31_op_from_const 3 Cbytecodes.Kdiv21int31
Primitives.Int31div21
| KInt31 (_, Int31Diveucl) -> int31_binop_from_const Cbytecodes.Kdivint31
Primitives.Int31diveucl
| KInt31 (_, Int31AddMulDiv) -> int31_op_from_const 3 Cbytecodes.Kaddmuldivint31
Primitives.Int31addmuldiv
| KInt31 (_, Int31Compare) -> int31_binop_from_const Cbytecodes.Kcompareint31
Primitives.Int31compare
| KInt31 (_, Int31Head0) -> int31_unop_from_const Cbytecodes.Khead0int31
Primitives.Int31head0
| KInt31 (_, Int31Tail0) -> int31_unop_from_const Cbytecodes.Ktail0int31
Primitives.Int31tail0
| KInt31 (_, Int31Lor) -> int31_binop_from_const Cbytecodes.Klorint31
Primitives.Int31lor
| KInt31 (_, Int31Land) -> int31_binop_from_const Cbytecodes.Klandint31
Primitives.Int31land
| KInt31 (_, Int31Lxor) -> int31_binop_from_const Cbytecodes.Klxorint31
Primitives.Int31lxor
| _ -> empty_reactive_info
let _ = Hook.set Retroknowledge.dispatch_hook dispatch
|