blob: 94da00c7eb2e5cc3a0f40d66c2c5f8846a6db58e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open Constr
(** This module defines the entry types for global declarations. This
information is entered in the environments. This includes global
constants/axioms, mutual inductive definitions, modules and module
types *)
(** {6 Local entries } *)
type local_entry =
| LocalDefEntry of constr
| LocalAssumEntry of constr
(** {6 Declaration of inductive types. } *)
(** Assume the following definition in concrete syntax:
{v Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1
...
with Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp. v}
then, in i{^ th} block, [mind_entry_params] is [xn:Xn;...;x1:X1];
[mind_entry_arity] is [Ai], defined in context [x1:X1;...;xn:Xn];
[mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]].
*)
type inductive_universes =
| Monomorphic_ind_entry of Univ.ContextSet.t
| Polymorphic_ind_entry of Univ.UContext.t
| Cumulative_ind_entry of Univ.CumulativityInfo.t
type one_inductive_entry = {
mind_entry_typename : Id.t;
mind_entry_arity : constr;
mind_entry_template : bool; (* Use template polymorphism *)
mind_entry_consnames : Id.t list;
mind_entry_lc : constr list }
type mutual_inductive_entry = {
mind_entry_record : (Id.t option) option;
(** Some (Some id): primitive record with id the binder name of the record
in projections.
Some None: non-primitive record *)
mind_entry_finite : Declarations.recursivity_kind;
mind_entry_params : (Id.t * local_entry) list;
mind_entry_inds : one_inductive_entry list;
mind_entry_universes : inductive_universes;
(* universe constraints and the constraints for subtyping of
inductive types in the block. *)
mind_entry_private : bool option;
}
(** {6 Constants (Definition/Axiom) } *)
type 'a proof_output = constr Univ.in_universe_context_set * 'a
type 'a const_entry_body = 'a proof_output Future.computation
type constant_universes_entry =
| Monomorphic_const_entry of Univ.ContextSet.t
| Polymorphic_const_entry of Univ.UContext.t
type 'a in_constant_universes_entry = 'a * constant_universes_entry
type 'a definition_entry = {
const_entry_body : 'a const_entry_body;
(* List of section variables *)
const_entry_secctx : Context.Named.t option;
(* State id on which the completion of type checking is reported *)
const_entry_feedback : Stateid.t option;
const_entry_type : types option;
const_entry_universes : constant_universes_entry;
const_entry_opaque : bool;
const_entry_inline_code : bool }
type section_def_entry = {
secdef_body : constr;
secdef_secctx : Context.Named.t option;
secdef_feedback : Stateid.t option;
secdef_type : types option;
}
type inline = int option (* inlining level, None for no inlining *)
type parameter_entry =
Context.Named.t option * types in_constant_universes_entry * inline
type projection_entry = {
proj_entry_ind : MutInd.t;
proj_entry_arg : int }
type 'a constant_entry =
| DefinitionEntry of 'a definition_entry
| ParameterEntry of parameter_entry
| ProjectionEntry of projection_entry
(** {6 Modules } *)
type module_struct_entry = Declarations.module_alg_expr
type module_params_entry =
(MBId.t * module_struct_entry) list (** older first *)
type module_type_entry = module_params_entry * module_struct_entry
type module_entry =
| MType of module_params_entry * module_struct_entry
| MExpr of
module_params_entry * module_struct_entry * module_struct_entry option
type seff_env =
[ `Nothing
(* The proof term and its universes.
Same as the constant_body's but not in an ephemeron *)
| `Opaque of Constr.t * Univ.ContextSet.t ]
type side_eff =
| SEsubproof of Constant.t * Declarations.constant_body * seff_env
| SEscheme of (inductive * Constant.t * Declarations.constant_body * seff_env) list * string
type side_effect = {
from_env : Declarations.structure_body CEphemeron.key;
eff : side_eff;
}
|