blob: b6b09c64efdccdb487516eae88ae968c8c8d8028 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: entries.ml 10664 2008-03-14 11:27:37Z soubiran $ i*)
(*i*)
open Names
open Univ
open Term
open Sign
(*i*)
(* This module defines the entry types for global declarations. This
information is entered in the environments. This includes global
constants/axioms, mutual inductive definitions, modules and module
types *)
(*s Local entries *)
type local_entry =
| LocalDef of constr
| LocalAssum of constr
(*s Declaration of inductive types. *)
(* Assume the following definition in concrete syntax:
\begin{verbatim}
Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1
...
with Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp.
\end{verbatim}
then, in $i^{th}$ block, [mind_entry_params] is [[xn:Xn;...;x1:X1]];
[mind_entry_arity] is [Ai], defined in context [[[x1:X1;...;xn:Xn]];
[mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]].
*)
type one_inductive_entry = {
mind_entry_typename : identifier;
mind_entry_arity : constr;
mind_entry_consnames : identifier list;
mind_entry_lc : constr list }
type mutual_inductive_entry = {
mind_entry_record : bool;
mind_entry_finite : bool;
mind_entry_params : (identifier * local_entry) list;
mind_entry_inds : one_inductive_entry list }
(*s Constants (Definition/Axiom) *)
type definition_entry = {
const_entry_body : constr;
const_entry_type : types option;
const_entry_opaque : bool;
const_entry_boxed : bool}
type parameter_entry = types*bool
type constant_entry =
| DefinitionEntry of definition_entry
| ParameterEntry of parameter_entry
(*s Modules *)
type specification_entry =
SPEconst of constant_entry
| SPEmind of mutual_inductive_entry
| SPEmodule of module_entry
| SPEalias of module_path
| SPEmodtype of module_struct_entry
and module_struct_entry =
MSEident of module_path
| MSEfunctor of mod_bound_id * module_struct_entry * module_struct_entry
| MSEwith of module_struct_entry * with_declaration
| MSEapply of module_struct_entry * module_struct_entry
and with_declaration =
With_Module of identifier list * module_path
| With_Definition of identifier list * constr
and module_structure = (label * specification_entry) list
and module_entry =
{ mod_entry_type : module_struct_entry option;
mod_entry_expr : module_struct_entry option}
|