summaryrefslogtreecommitdiff
path: root/kernel/entries.ml
blob: f17918a6c5a1d014ca6c41ad5f35d065020fdedf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i*)
open Names
open Univ
open Term
open Sign
(*i*)

(* This module defines the entry types for global declarations. This
   information is entered in the environments. This includes global
   constants/axioms, mutual inductive definitions, modules and module
   types *)


(*s Local entries *)

type local_entry =
  | LocalDef of constr
  | LocalAssum of constr


(*s Declaration of inductive types. *)

(* Assume the following definition in concrete syntax:
\begin{verbatim}
Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1
...
with      Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp.
\end{verbatim}
then, in $i^{th}$ block, [mind_entry_params] is [[xn:Xn;...;x1:X1]];
[mind_entry_arity] is [Ai], defined in context [[[x1:X1;...;xn:Xn]];
[mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]].
*)

type one_inductive_entry = {
  mind_entry_typename : identifier;
  mind_entry_arity : constr;
  mind_entry_consnames : identifier list;
  mind_entry_lc : constr list }

type mutual_inductive_entry = {
  mind_entry_record : bool;
  mind_entry_finite : bool;
  mind_entry_params : (identifier * local_entry) list;
  mind_entry_inds : one_inductive_entry list }


(*s Constants (Definition/Axiom) *)

type definition_entry = {
  const_entry_body   : constr;
  const_entry_secctx : section_context option;
  const_entry_type   : types option;
  const_entry_opaque : bool }

type inline = int option (* inlining level, None for no inlining *)

type parameter_entry = section_context option * types * inline 

type constant_entry =
  | DefinitionEntry of definition_entry
  | ParameterEntry of parameter_entry

(*s Modules *)

type module_struct_entry =
    MSEident of module_path
  | MSEfunctor of mod_bound_id * module_struct_entry * module_struct_entry
  | MSEwith of module_struct_entry * with_declaration
  | MSEapply of module_struct_entry * module_struct_entry

and with_declaration =
    With_Module of identifier list * module_path
  | With_Definition of identifier list * constr

and module_entry =
    { mod_entry_type : module_struct_entry option;
      mod_entry_expr : module_struct_entry option}