1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* This file is a late renaming in May 2000 of constant.ml which
itself was made for V7.0 in Aug 1999 out of a dispatch by
Jean-Christophe Filliâtre of Chet Murthy's constants.ml in V5.10.5
into cooking.ml, declare.ml and constant.ml, ...; renaming done
because the new contents exceeded in extent what the name
suggested *)
(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)
(* Declarations for the module systems added by Jacek Chrzaszcz, Aug 2002 *)
(* Miscellaneous extensions, cleaning or restructurations by Bruno
Barras, Hugo Herbelin, Jean-Christophe Filliâtre, Pierre Letouzey *)
(* This module defines the types of global declarations. This includes
global constants/axioms, mutual inductive definitions and the
module system *)
open Util
open Names
open Univ
open Term
open Sign
open Mod_subst
type engagement = ImpredicativeSet
(*s Constants (internal representation) (Definition/Axiom) *)
type polymorphic_arity = {
poly_param_levels : universe option list;
poly_level : universe;
}
type constant_type =
| NonPolymorphicType of types
| PolymorphicArity of rel_context * polymorphic_arity
type constr_substituted = constr substituted
let from_val = from_val
let force = force subst_mps
let subst_constr_subst = subst_substituted
(** Opaque proof terms are not loaded immediately, but are there
in a lazy form. Forcing this lazy may trigger some unmarshal of
the necessary structure. The ['a substituted] type isn't really great
here, so we store "manually" a substitution list, the younger one at top.
*)
type lazy_constr = constr_substituted Lazy.t * substitution list
let force_lazy_constr (c,l) =
List.fold_right subst_constr_subst l (Lazy.force c)
let lazy_constr_is_val (c,_) = Lazy.lazy_is_val c
let make_lazy_constr c = (c, [])
let force_opaque lc = force (force_lazy_constr lc)
let opaque_from_val c = (Lazy.lazy_from_val (from_val c), [])
let subst_lazy_constr sub (c,l) = (c,sub::l)
(** Inlining level of parameters at functor applications.
None means no inlining *)
type inline = int option
(** A constant can have no body (axiom/parameter), or a
transparent body, or an opaque one *)
type constant_def =
| Undef of inline
| Def of constr_substituted
| OpaqueDef of lazy_constr
type constant_body = {
const_hyps : section_context; (* New: younger hyp at top *)
const_body : constant_def;
const_type : constant_type;
const_body_code : Cemitcodes.to_patch_substituted;
const_constraints : constraints }
let body_of_constant cb = match cb.const_body with
| Undef _ -> None
| Def c -> Some c
| OpaqueDef lc -> Some (force_lazy_constr lc)
let constant_has_body cb = match cb.const_body with
| Undef _ -> false
| Def _ | OpaqueDef _ -> true
let is_opaque cb = match cb.const_body with
| OpaqueDef _ -> true
| Undef _ | Def _ -> false
(* Substitutions of [constant_body] *)
let subst_rel_declaration sub (id,copt,t as x) =
let copt' = Option.smartmap (subst_mps sub) copt in
let t' = subst_mps sub t in
if copt == copt' & t == t' then x else (id,copt',t')
let subst_rel_context sub = list_smartmap (subst_rel_declaration sub)
(* TODO: these substitution functions could avoid duplicating things
when the substitution have preserved all the fields *)
let subst_const_type sub arity =
if is_empty_subst sub then arity
else match arity with
| NonPolymorphicType s -> NonPolymorphicType (subst_mps sub s)
| PolymorphicArity (ctx,s) -> PolymorphicArity (subst_rel_context sub ctx,s)
let subst_const_def sub = function
| Undef inl -> Undef inl
| Def c -> Def (subst_constr_subst sub c)
| OpaqueDef lc -> OpaqueDef (subst_lazy_constr sub lc)
let subst_const_body sub cb = {
const_hyps = (assert (cb.const_hyps=[]); []);
const_body = subst_const_def sub cb.const_body;
const_type = subst_const_type sub cb.const_type;
const_body_code = Cemitcodes.subst_to_patch_subst sub cb.const_body_code;
const_constraints = cb.const_constraints}
(* Hash-consing of [constant_body] *)
let hcons_rel_decl ((n,oc,t) as d) =
let n' = hcons_name n
and oc' = Option.smartmap hcons_constr oc
and t' = hcons_types t
in if n' == n && oc' == oc && t' == t then d else (n',oc',t')
let hcons_rel_context l = list_smartmap hcons_rel_decl l
let hcons_polyarity ar =
{ poly_param_levels =
list_smartmap (Option.smartmap hcons_univ) ar.poly_param_levels;
poly_level = hcons_univ ar.poly_level }
let hcons_const_type = function
| NonPolymorphicType t ->
NonPolymorphicType (hcons_constr t)
| PolymorphicArity (ctx,s) ->
PolymorphicArity (hcons_rel_context ctx, hcons_polyarity s)
let hcons_const_def = function
| Undef inl -> Undef inl
| Def l_constr ->
let constr = force l_constr in
Def (from_val (hcons_constr constr))
| OpaqueDef lc ->
if lazy_constr_is_val lc then
let constr = force_opaque lc in
OpaqueDef (opaque_from_val (hcons_constr constr))
else OpaqueDef lc
let hcons_const_body cb =
{ cb with
const_body = hcons_const_def cb.const_body;
const_type = hcons_const_type cb.const_type;
const_constraints = hcons_constraints cb.const_constraints }
(*s Inductive types (internal representation with redundant
information). *)
type recarg =
| Norec
| Mrec of inductive
| Imbr of inductive
let subst_recarg sub r = match r with
| Norec -> r
| Mrec (kn,i) -> let kn' = subst_ind sub kn in
if kn==kn' then r else Mrec (kn',i)
| Imbr (kn,i) -> let kn' = subst_ind sub kn in
if kn==kn' then r else Imbr (kn',i)
type wf_paths = recarg Rtree.t
let mk_norec = Rtree.mk_node Norec [||]
let mk_paths r recargs =
Rtree.mk_node r
(Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs)
let dest_recarg p = fst (Rtree.dest_node p)
(* dest_subterms returns the sizes of each argument of each constructor of
an inductive object of size [p]. This should never be done for Norec,
because the number of sons does not correspond to the number of
constructors.
*)
let dest_subterms p =
let (ra,cstrs) = Rtree.dest_node p in
assert (ra<>Norec);
Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs
let recarg_length p j =
let (_,cstrs) = Rtree.dest_node p in
Array.length (snd (Rtree.dest_node cstrs.(j-1)))
let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p
(**********************************************************************)
(* Representation of mutual inductive types in the kernel *)
(*
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1
...
with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
*)
type monomorphic_inductive_arity = {
mind_user_arity : constr;
mind_sort : sorts;
}
type inductive_arity =
| Monomorphic of monomorphic_inductive_arity
| Polymorphic of polymorphic_arity
type one_inductive_body = {
(* Primitive datas *)
(* Name of the type: [Ii] *)
mind_typename : identifier;
(* Arity context of [Ii] with parameters: [forall params, Ui] *)
mind_arity_ctxt : rel_context;
(* Arity sort, original user arity, and allowed elim sorts, if monomorphic *)
mind_arity : inductive_arity;
(* Names of the constructors: [cij] *)
mind_consnames : identifier array;
(* Types of the constructors with parameters: [forall params, Tij],
where the Ik are replaced by de Bruijn index in the context
I1:forall params, U1 .. In:forall params, Un *)
mind_user_lc : types array;
(* Derived datas *)
(* Number of expected real arguments of the type (no let, no params) *)
mind_nrealargs : int;
(* Length of realargs context (with let, no params) *)
mind_nrealargs_ctxt : int;
(* List of allowed elimination sorts *)
mind_kelim : sorts_family list;
(* Head normalized constructor types so that their conclusion is atomic *)
mind_nf_lc : types array;
(* Length of the signature of the constructors (with let, w/o params) *)
mind_consnrealdecls : int array;
(* Signature of recursive arguments in the constructors *)
mind_recargs : wf_paths;
(* Datas for bytecode compilation *)
(* number of constant constructor *)
mind_nb_constant : int;
(* number of no constant constructor *)
mind_nb_args : int;
mind_reloc_tbl : Cbytecodes.reloc_table;
}
type mutual_inductive_body = {
(* The component of the mutual inductive block *)
mind_packets : one_inductive_body array;
(* Whether the inductive type has been declared as a record *)
mind_record : bool;
(* Whether the type is inductive or coinductive *)
mind_finite : bool;
(* Number of types in the block *)
mind_ntypes : int;
(* Section hypotheses on which the block depends *)
mind_hyps : section_context;
(* Number of expected parameters *)
mind_nparams : int;
(* Number of recursively uniform (i.e. ordinary) parameters *)
mind_nparams_rec : int;
(* The context of parameters (includes let-in declaration) *)
mind_params_ctxt : rel_context;
(* Universes constraints enforced by the inductive declaration *)
mind_constraints : constraints;
}
let subst_indarity sub = function
| Monomorphic s ->
Monomorphic {
mind_user_arity = subst_mps sub s.mind_user_arity;
mind_sort = s.mind_sort;
}
| Polymorphic s as x -> x
let subst_mind_packet sub mbp =
{ mind_consnames = mbp.mind_consnames;
mind_consnrealdecls = mbp.mind_consnrealdecls;
mind_typename = mbp.mind_typename;
mind_nf_lc = array_smartmap (subst_mps sub) mbp.mind_nf_lc;
mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt;
mind_arity = subst_indarity sub mbp.mind_arity;
mind_user_lc = array_smartmap (subst_mps sub) mbp.mind_user_lc;
mind_nrealargs = mbp.mind_nrealargs;
mind_nrealargs_ctxt = mbp.mind_nrealargs_ctxt;
mind_kelim = mbp.mind_kelim;
mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*);
mind_nb_constant = mbp.mind_nb_constant;
mind_nb_args = mbp.mind_nb_args;
mind_reloc_tbl = mbp.mind_reloc_tbl }
let subst_mind sub mib =
{ mind_record = mib.mind_record ;
mind_finite = mib.mind_finite ;
mind_ntypes = mib.mind_ntypes ;
mind_hyps = (assert (mib.mind_hyps=[]); []) ;
mind_nparams = mib.mind_nparams;
mind_nparams_rec = mib.mind_nparams_rec;
mind_params_ctxt =
map_rel_context (subst_mps sub) mib.mind_params_ctxt;
mind_packets = array_smartmap (subst_mind_packet sub) mib.mind_packets ;
mind_constraints = mib.mind_constraints }
let hcons_indarity = function
| Monomorphic a ->
Monomorphic { mind_user_arity = hcons_constr a.mind_user_arity;
mind_sort = hcons_sorts a.mind_sort }
| Polymorphic a -> Polymorphic (hcons_polyarity a)
let hcons_mind_packet oib =
{ oib with
mind_typename = hcons_ident oib.mind_typename;
mind_arity_ctxt = hcons_rel_context oib.mind_arity_ctxt;
mind_arity = hcons_indarity oib.mind_arity;
mind_consnames = array_smartmap hcons_ident oib.mind_consnames;
mind_user_lc = array_smartmap hcons_types oib.mind_user_lc;
mind_nf_lc = array_smartmap hcons_types oib.mind_nf_lc }
let hcons_mind mib =
{ mib with
mind_packets = array_smartmap hcons_mind_packet mib.mind_packets;
mind_params_ctxt = hcons_rel_context mib.mind_params_ctxt;
mind_constraints = hcons_constraints mib.mind_constraints }
(*s Modules: signature component specifications, module types, and
module declarations *)
type structure_field_body =
| SFBconst of constant_body
| SFBmind of mutual_inductive_body
| SFBmodule of module_body
| SFBmodtype of module_type_body
and structure_body = (label * structure_field_body) list
and struct_expr_body =
| SEBident of module_path
| SEBfunctor of mod_bound_id * module_type_body * struct_expr_body
| SEBapply of struct_expr_body * struct_expr_body * constraints
| SEBstruct of structure_body
| SEBwith of struct_expr_body * with_declaration_body
and with_declaration_body =
With_module_body of identifier list * module_path
| With_definition_body of identifier list * constant_body
and module_body =
{ mod_mp : module_path;
mod_expr : struct_expr_body option;
mod_type : struct_expr_body;
mod_type_alg : struct_expr_body option;
mod_constraints : constraints;
mod_delta : delta_resolver;
mod_retroknowledge : Retroknowledge.action list}
and module_type_body =
{ typ_mp : module_path;
typ_expr : struct_expr_body;
typ_expr_alg : struct_expr_body option ;
typ_constraints : constraints;
typ_delta :delta_resolver}
|