1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: declarations.ml 13323 2010-07-24 15:57:30Z herbelin $ i*)
(*i*)
open Util
open Names
open Univ
open Term
open Sign
open Mod_subst
(*i*)
(* This module defines the types of global declarations. This includes
global constants/axioms and mutual inductive definitions *)
type engagement = ImpredicativeSet
(*s Constants (internal representation) (Definition/Axiom) *)
type polymorphic_arity = {
poly_param_levels : universe option list;
poly_level : universe;
}
type constant_type =
| NonPolymorphicType of types
| PolymorphicArity of rel_context * polymorphic_arity
type constr_substituted = constr substituted
let from_val = from_val
let force = force subst_mps
let subst_constr_subst = subst_substituted
type constant_body = {
const_hyps : section_context; (* New: younger hyp at top *)
const_body : constr_substituted option;
const_type : constant_type;
const_body_code : Cemitcodes.to_patch_substituted;
(* const_type_code : Cemitcodes.to_patch; *)
const_constraints : constraints;
const_opaque : bool;
const_inline : bool}
(*s Inductive types (internal representation with redundant
information). *)
let subst_rel_declaration sub (id,copt,t as x) =
let copt' = Option.smartmap (subst_mps sub) copt in
let t' = subst_mps sub t in
if copt == copt' & t == t' then x else (id,copt',t')
let subst_rel_context sub = list_smartmap (subst_rel_declaration sub)
type recarg =
| Norec
| Mrec of int
| Imbr of inductive
let subst_recarg sub r = match r with
| Norec | Mrec _ -> r
| Imbr (kn,i) -> let kn' = subst_ind sub kn in
if kn==kn' then r else Imbr (kn',i)
type wf_paths = recarg Rtree.t
let mk_norec = Rtree.mk_node Norec [||]
let mk_paths r recargs =
Rtree.mk_node r
(Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs)
let dest_recarg p = fst (Rtree.dest_node p)
let dest_subterms p =
let (_,cstrs) = Rtree.dest_node p in
Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs
let recarg_length p j =
let (_,cstrs) = Rtree.dest_node p in
Array.length (snd (Rtree.dest_node cstrs.(j-1)))
let subst_wf_paths sub p = Rtree.smartmap (subst_recarg sub) p
(**********************************************************************)
(* Representation of mutual inductive types in the kernel *)
(*
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1
...
with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
*)
type monomorphic_inductive_arity = {
mind_user_arity : constr;
mind_sort : sorts;
}
type inductive_arity =
| Monomorphic of monomorphic_inductive_arity
| Polymorphic of polymorphic_arity
type one_inductive_body = {
(* Primitive datas *)
(* Name of the type: [Ii] *)
mind_typename : identifier;
(* Arity context of [Ii] with parameters: [forall params, Ui] *)
mind_arity_ctxt : rel_context;
(* Arity sort, original user arity, and allowed elim sorts, if monomorphic *)
mind_arity : inductive_arity;
(* Names of the constructors: [cij] *)
mind_consnames : identifier array;
(* Types of the constructors with parameters: [forall params, Tij],
where the Ik are replaced by de Bruijn index in the context
I1:forall params, U1 .. In:forall params, Un *)
mind_user_lc : types array;
(* Derived datas *)
(* Number of expected real arguments of the type (no let, no params) *)
mind_nrealargs : int;
(* Length of realargs context (with let, no params) *)
mind_nrealargs_ctxt : int;
(* List of allowed elimination sorts *)
mind_kelim : sorts_family list;
(* Head normalized constructor types so that their conclusion is atomic *)
mind_nf_lc : types array;
(* Length of the signature of the constructors (with let, w/o params) *)
mind_consnrealdecls : int array;
(* Signature of recursive arguments in the constructors *)
mind_recargs : wf_paths;
(* Datas for bytecode compilation *)
(* number of constant constructor *)
mind_nb_constant : int;
(* number of no constant constructor *)
mind_nb_args : int;
mind_reloc_tbl : Cbytecodes.reloc_table;
}
type mutual_inductive_body = {
(* The component of the mutual inductive block *)
mind_packets : one_inductive_body array;
(* Whether the inductive type has been declared as a record *)
mind_record : bool;
(* Whether the type is inductive or coinductive *)
mind_finite : bool;
(* Number of types in the block *)
mind_ntypes : int;
(* Section hypotheses on which the block depends *)
mind_hyps : section_context;
(* Number of expected parameters *)
mind_nparams : int;
(* Number of recursively uniform (i.e. ordinary) parameters *)
mind_nparams_rec : int;
(* The context of parameters (includes let-in declaration) *)
mind_params_ctxt : rel_context;
(* Universes constraints enforced by the inductive declaration *)
mind_constraints : constraints;
}
let subst_arity sub arity =
if sub = empty_subst then arity
else match arity with
| NonPolymorphicType s -> NonPolymorphicType (subst_mps sub s)
| PolymorphicArity (ctx,s) -> PolymorphicArity (subst_rel_context sub ctx,s)
(* TODO: should be changed to non-coping after Term.subst_mps *)
let subst_const_body sub cb = {
const_hyps = (assert (cb.const_hyps=[]); []);
const_body = Option.map (subst_constr_subst sub) cb.const_body;
const_type = subst_arity sub cb.const_type;
const_body_code = Cemitcodes.subst_to_patch_subst sub cb.const_body_code;
(*const_type_code = Cemitcodes.subst_to_patch sub cb.const_type_code;*)
const_constraints = cb.const_constraints;
const_opaque = cb.const_opaque;
const_inline = cb.const_inline}
let subst_arity sub = function
| Monomorphic s ->
Monomorphic {
mind_user_arity = subst_mps sub s.mind_user_arity;
mind_sort = s.mind_sort;
}
| Polymorphic s as x -> x
let subst_mind_packet sub mbp =
{ mind_consnames = mbp.mind_consnames;
mind_consnrealdecls = mbp.mind_consnrealdecls;
mind_typename = mbp.mind_typename;
mind_nf_lc = array_smartmap (subst_mps sub) mbp.mind_nf_lc;
mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt;
mind_arity = subst_arity sub mbp.mind_arity;
mind_user_lc = array_smartmap (subst_mps sub) mbp.mind_user_lc;
mind_nrealargs = mbp.mind_nrealargs;
mind_nrealargs_ctxt = mbp.mind_nrealargs_ctxt;
mind_kelim = mbp.mind_kelim;
mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*);
mind_nb_constant = mbp.mind_nb_constant;
mind_nb_args = mbp.mind_nb_args;
mind_reloc_tbl = mbp.mind_reloc_tbl }
let subst_mind sub mib =
{ mind_record = mib.mind_record ;
mind_finite = mib.mind_finite ;
mind_ntypes = mib.mind_ntypes ;
mind_hyps = (assert (mib.mind_hyps=[]); []) ;
mind_nparams = mib.mind_nparams;
mind_nparams_rec = mib.mind_nparams_rec;
mind_params_ctxt =
map_rel_context (subst_mps sub) mib.mind_params_ctxt;
mind_packets = array_smartmap (subst_mind_packet sub) mib.mind_packets ;
mind_constraints = mib.mind_constraints }
(*s Modules: signature component specifications, module types, and
module declarations *)
type structure_field_body =
| SFBconst of constant_body
| SFBmind of mutual_inductive_body
| SFBmodule of module_body
| SFBmodtype of module_type_body
and structure_body = (label * structure_field_body) list
and struct_expr_body =
| SEBident of module_path
| SEBfunctor of mod_bound_id * module_type_body * struct_expr_body
| SEBapply of struct_expr_body * struct_expr_body * constraints
| SEBstruct of structure_body
| SEBwith of struct_expr_body * with_declaration_body
and with_declaration_body =
With_module_body of identifier list * module_path
| With_definition_body of identifier list * constant_body
and module_body =
{ mod_mp : module_path;
mod_expr : struct_expr_body option;
mod_type : struct_expr_body;
mod_type_alg : struct_expr_body option;
mod_constraints : constraints;
mod_delta : delta_resolver;
mod_retroknowledge : Retroknowledge.action list}
and module_type_body =
{ typ_mp : module_path;
typ_expr : struct_expr_body;
typ_expr_alg : struct_expr_body option ;
typ_constraints : constraints;
typ_delta :delta_resolver}
|