1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* Created by Jean-Christophe Filliâtre out of names.ml as part of the
rebuilding of Coq around a purely functional abstract type-checker,
Aug 1999 *)
(* Miscellaneous extensions, restructurations and bug-fixes by Hugo
Herbelin and Bruno Barras *)
(* This file defines types and combinators regarding indexes-based and
names-based contexts *)
(** The modules defined below represent a {e local context}
as defined by Chapter 4 in the Reference Manual:
A {e local context} is an ordered list of of {e local declarations}
of names that we call {e variables}.
A {e local declaration} of some variable can be either:
- a {e local assumption}, or
- a {e local definition}.
*)
open Util
open Names
(** Representation of contexts that can capture anonymous as well as non-anonymous variables.
Individual declarations are then designated by de Bruijn indexes. *)
module Rel =
struct
(** Representation of {e local declarations}. *)
module Declaration =
struct
(* local declaration *)
type ('constr, 'types) pt =
| LocalAssum of Name.t * 'types (** name, type *)
| LocalDef of Name.t * 'constr * 'types (** name, value, type *)
type t = (Constr.constr, Constr.types) pt
(** Return the name bound by a given declaration. *)
let get_name = function
| LocalAssum (na,_)
| LocalDef (na,_,_) -> na
(** Return [Some value] for local-declarations and [None] for local-assumptions. *)
let get_value = function
| LocalAssum _ -> None
| LocalDef (_,v,_) -> Some v
(** Return the type of the name bound by a given declaration. *)
let get_type = function
| LocalAssum (_,ty)
| LocalDef (_,_,ty) -> ty
(** Set the name that is bound by a given declaration. *)
let set_name na = function
| LocalAssum (_,ty) -> LocalAssum (na, ty)
| LocalDef (_,v,ty) -> LocalDef (na, v, ty)
(** Set the type of the bound variable in a given declaration. *)
let set_type ty = function
| LocalAssum (na,_) -> LocalAssum (na, ty)
| LocalDef (na,v,_) -> LocalDef (na, v, ty)
(** Return [true] iff a given declaration is a local assumption. *)
let is_local_assum = function
| LocalAssum _ -> true
| LocalDef _ -> false
(** Return [true] iff a given declaration is a local definition. *)
let is_local_def = function
| LocalAssum _ -> false
| LocalDef _ -> true
(** Check whether any term in a given declaration satisfies a given predicate. *)
let exists f = function
| LocalAssum (_, ty) -> f ty
| LocalDef (_, v, ty) -> f v || f ty
(** Check whether all terms in a given declaration satisfy a given predicate. *)
let for_all f = function
| LocalAssum (_, ty) -> f ty
| LocalDef (_, v, ty) -> f v && f ty
(** Check whether the two given declarations are equal. *)
let equal eq decl1 decl2 =
match decl1, decl2 with
| LocalAssum (n1,ty1), LocalAssum (n2, ty2) ->
Name.equal n1 n2 && eq ty1 ty2
| LocalDef (n1,v1,ty1), LocalDef (n2,v2,ty2) ->
Name.equal n1 n2 && eq v1 v2 && eq ty1 ty2
| _ ->
false
(** Map the name bound by a given declaration. *)
let map_name f = function
| LocalAssum (na, ty) as decl ->
let na' = f na in
if na == na' then decl else LocalAssum (na', ty)
| LocalDef (na, v, ty) as decl ->
let na' = f na in
if na == na' then decl else LocalDef (na', v, ty)
(** For local assumptions, this function returns the original local assumptions.
For local definitions, this function maps the value in the local definition. *)
let map_value f = function
| LocalAssum _ as decl -> decl
| LocalDef (na, v, t) as decl ->
let v' = f v in
if v == v' then decl else LocalDef (na, v', t)
(** Map the type of the name bound by a given declaration. *)
let map_type f = function
| LocalAssum (na, ty) as decl ->
let ty' = f ty in
if ty == ty' then decl else LocalAssum (na, ty')
| LocalDef (na, v, ty) as decl ->
let ty' = f ty in
if ty == ty' then decl else LocalDef (na, v, ty')
(** Map all terms in a given declaration. *)
let map_constr f = function
| LocalAssum (na, ty) as decl ->
let ty' = f ty in
if ty == ty' then decl else LocalAssum (na, ty')
| LocalDef (na, v, ty) as decl ->
let v' = f v in
let ty' = f ty in
if v == v' && ty == ty' then decl else LocalDef (na, v', ty')
(** Perform a given action on all terms in a given declaration. *)
let iter_constr f = function
| LocalAssum (_,ty) -> f ty
| LocalDef (_,v,ty) -> f v; f ty
(** Reduce all terms in a given declaration to a single value. *)
let fold_constr f decl acc =
match decl with
| LocalAssum (n,ty) -> f ty acc
| LocalDef (n,v,ty) -> f ty (f v acc)
let to_tuple = function
| LocalAssum (na, ty) -> na, None, ty
| LocalDef (na, v, ty) -> na, Some v, ty
end
(** Rel-context is represented as a list of declarations.
Inner-most declarations are at the beginning of the list.
Outer-most declarations are at the end of the list. *)
type ('constr, 'types) pt = ('constr, 'types) Declaration.pt list
type t = Declaration.t list
(** empty rel-context *)
let empty = []
(** Return a new rel-context enriched by with a given inner-most declaration. *)
let add d ctx = d :: ctx
(** Return the number of {e local declarations} in a given context. *)
let length = List.length
(** [extended_rel_list n Γ] builds an instance [args] such that [Γ,Δ ⊢ args:Γ]
with n = |Δ| and with the local definitions of [Γ] skipped in
[args]. Example: for [x:T,y:=c,z:U] and [n]=2, it gives [Rel 5, Rel 3]. *)
let nhyps ctx =
let open Declaration in
let rec nhyps acc = function
| [] -> acc
| LocalAssum _ :: hyps -> nhyps (succ acc) hyps
| LocalDef _ :: hyps -> nhyps acc hyps
in
nhyps 0 ctx
(** Return a declaration designated by a given de Bruijn index.
@raise Not_found if the designated de Bruijn index is not present in the designated rel-context. *)
let rec lookup n ctx =
match n, ctx with
| 1, decl :: _ -> decl
| n, _ :: sign -> lookup (n-1) sign
| _, [] -> raise Not_found
(** Check whether given two rel-contexts are equal. *)
let equal eq l = List.equal (fun c -> Declaration.equal eq c) l
(** Map all terms in a given rel-context. *)
let map f = List.smartmap (Declaration.map_constr f)
(** Perform a given action on every declaration in a given rel-context. *)
let iter f = List.iter (Declaration.iter_constr f)
(** Reduce all terms in a given rel-context to a single value.
Innermost declarations are processed first. *)
let fold_inside f ~init = List.fold_left f init
(** Reduce all terms in a given rel-context to a single value.
Outermost declarations are processed first. *)
let fold_outside f l ~init = List.fold_right f l init
(** Map a given rel-context to a list where each {e local assumption} is mapped to [true]
and each {e local definition} is mapped to [false]. *)
let to_tags l =
let rec aux l = function
| [] -> l
| Declaration.LocalDef _ :: ctx -> aux (true::l) ctx
| Declaration.LocalAssum _ :: ctx -> aux (false::l) ctx
in aux [] l
(** [extended_list n Γ] builds an instance [args] such that [Γ,Δ ⊢ args:Γ]
with n = |Δ| and with the {e local definitions} of [Γ] skipped in
[args]. Example: for [x:T, y:=c, z:U] and [n]=2, it gives [Rel 5, Rel 3]. *)
let to_extended_list mk n l =
let rec reln l p = function
| Declaration.LocalAssum _ :: hyps -> reln (mk (n+p) :: l) (p+1) hyps
| Declaration.LocalDef _ :: hyps -> reln l (p+1) hyps
| [] -> l
in
reln [] 1 l
(** [extended_vect n Γ] does the same, returning instead an array. *)
let to_extended_vect mk n hyps = Array.of_list (to_extended_list mk n hyps)
end
(** This module represents contexts that can capture non-anonymous variables.
Individual declarations are then designated by the identifiers they bind. *)
module Named =
struct
(** Representation of {e local declarations}. *)
module Declaration =
struct
(** local declaration *)
type ('constr, 'types) pt =
| LocalAssum of Id.t * 'types (** identifier, type *)
| LocalDef of Id.t * 'constr * 'types (** identifier, value, type *)
type t = (Constr.constr, Constr.types) pt
(** Return the identifier bound by a given declaration. *)
let get_id = function
| LocalAssum (id,_) -> id
| LocalDef (id,_,_) -> id
(** Return [Some value] for local-declarations and [None] for local-assumptions. *)
let get_value = function
| LocalAssum _ -> None
| LocalDef (_,v,_) -> Some v
(** Return the type of the name bound by a given declaration. *)
let get_type = function
| LocalAssum (_,ty)
| LocalDef (_,_,ty) -> ty
(** Set the identifier that is bound by a given declaration. *)
let set_id id = function
| LocalAssum (_,ty) -> LocalAssum (id, ty)
| LocalDef (_, v, ty) -> LocalDef (id, v, ty)
(** Set the type of the bound variable in a given declaration. *)
let set_type ty = function
| LocalAssum (id,_) -> LocalAssum (id, ty)
| LocalDef (id,v,_) -> LocalDef (id, v, ty)
(** Return [true] iff a given declaration is a local assumption. *)
let is_local_assum = function
| LocalAssum _ -> true
| LocalDef _ -> false
(** Return [true] iff a given declaration is a local definition. *)
let is_local_def = function
| LocalDef _ -> true
| LocalAssum _ -> false
(** Check whether any term in a given declaration satisfies a given predicate. *)
let exists f = function
| LocalAssum (_, ty) -> f ty
| LocalDef (_, v, ty) -> f v || f ty
(** Check whether all terms in a given declaration satisfy a given predicate. *)
let for_all f = function
| LocalAssum (_, ty) -> f ty
| LocalDef (_, v, ty) -> f v && f ty
(** Check whether the two given declarations are equal. *)
let equal eq decl1 decl2 =
match decl1, decl2 with
| LocalAssum (id1, ty1), LocalAssum (id2, ty2) ->
Id.equal id1 id2 && eq ty1 ty2
| LocalDef (id1, v1, ty1), LocalDef (id2, v2, ty2) ->
Id.equal id1 id2 && eq v1 v2 && eq ty1 ty2
| _ ->
false
(** Map the identifier bound by a given declaration. *)
let map_id f = function
| LocalAssum (id, ty) as decl ->
let id' = f id in
if id == id' then decl else LocalAssum (id', ty)
| LocalDef (id, v, ty) as decl ->
let id' = f id in
if id == id' then decl else LocalDef (id', v, ty)
(** For local assumptions, this function returns the original local assumptions.
For local definitions, this function maps the value in the local definition. *)
let map_value f = function
| LocalAssum _ as decl -> decl
| LocalDef (na, v, t) as decl ->
let v' = f v in
if v == v' then decl else LocalDef (na, v', t)
(** Map the type of the name bound by a given declaration. *)
let map_type f = function
| LocalAssum (id, ty) as decl ->
let ty' = f ty in
if ty == ty' then decl else LocalAssum (id, ty')
| LocalDef (id, v, ty) as decl ->
let ty' = f ty in
if ty == ty' then decl else LocalDef (id, v, ty')
(** Map all terms in a given declaration. *)
let map_constr f = function
| LocalAssum (id, ty) as decl ->
let ty' = f ty in
if ty == ty' then decl else LocalAssum (id, ty')
| LocalDef (id, v, ty) as decl ->
let v' = f v in
let ty' = f ty in
if v == v' && ty == ty' then decl else LocalDef (id, v', ty')
(** Perform a given action on all terms in a given declaration. *)
let iter_constr f = function
| LocalAssum (_, ty) -> f ty
| LocalDef (_, v, ty) -> f v; f ty
(** Reduce all terms in a given declaration to a single value. *)
let fold_constr f decl a =
match decl with
| LocalAssum (_, ty) -> f ty a
| LocalDef (_, v, ty) -> a |> f v |> f ty
let to_tuple = function
| LocalAssum (id, ty) -> id, None, ty
| LocalDef (id, v, ty) -> id, Some v, ty
let of_tuple = function
| id, None, ty -> LocalAssum (id, ty)
| id, Some v, ty -> LocalDef (id, v, ty)
let of_rel_decl f = function
| Rel.Declaration.LocalAssum (na,t) ->
LocalAssum (f na, t)
| Rel.Declaration.LocalDef (na,v,t) ->
LocalDef (f na, v, t)
let to_rel_decl = function
| LocalAssum (id,t) ->
Rel.Declaration.LocalAssum (Name id, t)
| LocalDef (id,v,t) ->
Rel.Declaration.LocalDef (Name id,v,t)
end
(** Named-context is represented as a list of declarations.
Inner-most declarations are at the beginning of the list.
Outer-most declarations are at the end of the list. *)
type ('constr, 'types) pt = ('constr, 'types) Declaration.pt list
type t = Declaration.t list
(** empty named-context *)
let empty = []
(** empty named-context *)
let add d ctx = d :: ctx
(** Return the number of {e local declarations} in a given named-context. *)
let length = List.length
(** Return a declaration designated by a given identifier
@raise Not_found if the designated identifier is not present in the designated named-context. *)
let rec lookup id = function
| decl :: _ when Id.equal id (Declaration.get_id decl) -> decl
| _ :: sign -> lookup id sign
| [] -> raise Not_found
(** Check whether given two named-contexts are equal. *)
let equal eq l = List.equal (fun c -> Declaration.equal eq c) l
(** Map all terms in a given named-context. *)
let map f = List.smartmap (Declaration.map_constr f)
(** Perform a given action on every declaration in a given named-context. *)
let iter f = List.iter (Declaration.iter_constr f)
(** Reduce all terms in a given named-context to a single value.
Innermost declarations are processed first. *)
let fold_inside f ~init = List.fold_left f init
(** Reduce all terms in a given named-context to a single value.
Outermost declarations are processed first. *)
let fold_outside f l ~init = List.fold_right f l init
(** Return the set of all identifiers bound in a given named-context. *)
let to_vars l =
List.fold_left (fun accu decl -> Id.Set.add (Declaration.get_id decl) accu) Id.Set.empty l
(** [instance_from_named_context Ω] builds an instance [args] such
that [Ω ⊢ args:Ω] where [Ω] is a named context and with the local
definitions of [Ω] skipped. Example: for [id1:T,id2:=c,id3:U], it
gives [Var id1, Var id3]. All [idj] are supposed distinct. *)
let to_instance mk l =
let filter = function
| Declaration.LocalAssum (id, _) -> Some (mk id)
| _ -> None
in
List.map_filter filter l
end
module Compacted =
struct
module Declaration =
struct
type ('constr, 'types) pt =
| LocalAssum of Id.t list * 'types
| LocalDef of Id.t list * 'constr * 'types
type t = (Constr.constr, Constr.types) pt
let map_constr f = function
| LocalAssum (ids, ty) as decl ->
let ty' = f ty in
if ty == ty' then decl else LocalAssum (ids, ty')
| LocalDef (ids, c, ty) as decl ->
let ty' = f ty in
let c' = f c in
if c == c' && ty == ty' then decl else LocalDef (ids,c',ty')
let of_named_decl = function
| Named.Declaration.LocalAssum (id,t) ->
LocalAssum ([id],t)
| Named.Declaration.LocalDef (id,v,t) ->
LocalDef ([id],v,t)
let to_named_context = function
| LocalAssum (ids, t) ->
List.map (fun id -> Named.Declaration.LocalAssum (id,t)) ids
| LocalDef (ids, v, t) ->
List.map (fun id -> Named.Declaration.LocalDef (id,v,t)) ids
end
type ('constr, 'types) pt = ('constr, 'types) Declaration.pt list
type t = Declaration.t list
let fold f l ~init = List.fold_right f l init
end
|