1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 2002 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License, with */
/* the special exception on linking described in file ../LICENSE. */
/* */
/***********************************************************************/
/* Wrapper macros around native 64-bit integer arithmetic,
so that it has the same interface as the software emulation
provided in int64_emul.h */
#ifndef CAML_INT64_NATIVE_H
#define CAML_INT64_NATIVE_H
#define I64_literal(hi,lo) ((int64)(hi) << 32 | (lo))
#define I64_compare(x,y) (((x) > (y)) - ((x) < (y)))
#define I64_ult(x,y) ((uint64)(x) < (uint64)(y))
#define I64_neg(x) (-(x))
#define I64_add(x,y) ((x) + (y))
#define I64_sub(x,y) ((x) - (y))
#define I64_mul(x,y) ((x) * (y))
#define I64_is_zero(x) ((x) == 0)
#define I64_is_negative(x) ((x) < 0)
#define I64_div(x,y) ((x) / (y))
#define I64_mod(x,y) ((x) % (y))
#define I64_udivmod(x,y,quo,rem) \
(*(rem) = (uint64)(x) % (uint64)(y), \
*(quo) = (uint64)(x) / (uint64)(y))
#define I64_and(x,y) ((x) & (y))
#define I64_or(x,y) ((x) | (y))
#define I64_xor(x,y) ((x) ^ (y))
#define I64_lsl(x,y) ((x) << (y))
#define I64_asr(x,y) ((x) >> (y))
#define I64_lsr(x,y) ((uint64)(x) >> (y))
#define I64_to_intnat(x) ((intnat) (x))
#define I64_of_intnat(x) ((intnat) (x))
#define I64_to_int32(x) ((int32) (x))
#define I64_of_int32(x) ((int64) (x))
#define I64_to_double(x) ((double)(x))
#define I64_of_double(x) ((int64)(x))
#endif /* CAML_INT64_NATIVE_H */
|