1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Pp
open Util
open Names
open Nameops
open Libnames
open Glob_term
open Term
open Mod_subst
(*i*)
(**********************************************************************)
(* This is the subtype of glob_constr allowed in syntactic extensions *)
(* For AList: first constr is iterator, second is terminator;
first id is where each argument of the list has to be substituted
in iterator and snd id is alternative name just for printing;
boolean is associativity *)
type aconstr =
(* Part common to glob_constr and cases_pattern *)
| ARef of global_reference
| AVar of identifier
| AApp of aconstr * aconstr list
| AList of identifier * identifier * aconstr * aconstr * bool
(* Part only in glob_constr *)
| ALambda of name * aconstr * aconstr
| AProd of name * aconstr * aconstr
| ABinderList of identifier * identifier * aconstr * aconstr
| ALetIn of name * aconstr * aconstr
| ACases of case_style * aconstr option *
(aconstr * (name * (inductive * int * name list) option)) list *
(cases_pattern list * aconstr) list
| ALetTuple of name list * (name * aconstr option) * aconstr * aconstr
| AIf of aconstr * (name * aconstr option) * aconstr * aconstr
| ARec of fix_kind * identifier array *
(name * aconstr option * aconstr) list array * aconstr array *
aconstr array
| ASort of glob_sort
| AHole of Evd.hole_kind
| APatVar of patvar
| ACast of aconstr * aconstr cast_type
type scope_name = string
type tmp_scope_name = scope_name
type subscopes = tmp_scope_name option * scope_name list
type notation_var_instance_type =
| NtnTypeConstr | NtnTypeConstrList | NtnTypeBinderList
type notation_var_internalization_type =
| NtnInternTypeConstr | NtnInternTypeBinder | NtnInternTypeIdent
type interpretation =
(identifier * (subscopes * notation_var_instance_type)) list * aconstr
(**********************************************************************)
(* Re-interpret a notation as a glob_constr, taking care of binders *)
let name_to_ident = function
| Anonymous -> error "This expression should be a simple identifier."
| Name id -> id
let to_id g e id = let e,na = g e (Name id) in e,name_to_ident na
let rec cases_pattern_fold_map loc g e = function
| PatVar (_,na) ->
let e',na' = g e na in e', PatVar (loc,na')
| PatCstr (_,cstr,patl,na) ->
let e',na' = g e na in
let e',patl' = list_fold_map (cases_pattern_fold_map loc g) e patl in
e', PatCstr (loc,cstr,patl',na')
let rec subst_glob_vars l = function
| GVar (_,id) as r -> (try List.assoc id l with Not_found -> r)
| GProd (loc,Name id,bk,t,c) ->
let id =
try match List.assoc id l with GVar(_,id') -> id' | _ -> id
with Not_found -> id in
GProd (loc,Name id,bk,subst_glob_vars l t,subst_glob_vars l c)
| GLambda (loc,Name id,bk,t,c) ->
let id =
try match List.assoc id l with GVar(_,id') -> id' | _ -> id
with Not_found -> id in
GLambda (loc,Name id,bk,subst_glob_vars l t,subst_glob_vars l c)
| r -> map_glob_constr (subst_glob_vars l) r (* assume: id is not binding *)
let ldots_var = id_of_string ".."
let glob_constr_of_aconstr_with_binders loc g f e = function
| AVar id -> GVar (loc,id)
| AApp (a,args) -> GApp (loc,f e a, List.map (f e) args)
| AList (x,y,iter,tail,swap) ->
let t = f e tail in let it = f e iter in
let innerl = (ldots_var,t)::(if swap then [] else [x,GVar(loc,y)]) in
let inner = GApp (loc,GVar (loc,ldots_var),[subst_glob_vars innerl it]) in
let outerl = (ldots_var,inner)::(if swap then [x,GVar(loc,y)] else []) in
subst_glob_vars outerl it
| ABinderList (x,y,iter,tail) ->
let t = f e tail in let it = f e iter in
let innerl = [(ldots_var,t);(x,GVar(loc,y))] in
let inner = GApp (loc,GVar (loc,ldots_var),[subst_glob_vars innerl it]) in
let outerl = [(ldots_var,inner)] in
subst_glob_vars outerl it
| ALambda (na,ty,c) ->
let e',na = g e na in GLambda (loc,na,Explicit,f e ty,f e' c)
| AProd (na,ty,c) ->
let e',na = g e na in GProd (loc,na,Explicit,f e ty,f e' c)
| ALetIn (na,b,c) ->
let e',na = g e na in GLetIn (loc,na,f e b,f e' c)
| ACases (sty,rtntypopt,tml,eqnl) ->
let e',tml' = List.fold_right (fun (tm,(na,t)) (e',tml') ->
let e',t' = match t with
| None -> e',None
| Some (ind,npar,nal) ->
let e',nal' = List.fold_right (fun na (e',nal) ->
let e',na' = g e' na in e',na'::nal) nal (e',[]) in
e',Some (loc,ind,npar,nal') in
let e',na' = g e' na in
(e',(f e tm,(na',t'))::tml')) tml (e,[]) in
let fold (idl,e) na = let (e,na) = g e na in ((name_cons na idl,e),na) in
let eqnl' = List.map (fun (patl,rhs) ->
let ((idl,e),patl) =
list_fold_map (cases_pattern_fold_map loc fold) ([],e) patl in
(loc,idl,patl,f e rhs)) eqnl in
GCases (loc,sty,Option.map (f e') rtntypopt,tml',eqnl')
| ALetTuple (nal,(na,po),b,c) ->
let e',nal = list_fold_map g e nal in
let e'',na = g e na in
GLetTuple (loc,nal,(na,Option.map (f e'') po),f e b,f e' c)
| AIf (c,(na,po),b1,b2) ->
let e',na = g e na in
GIf (loc,f e c,(na,Option.map (f e') po),f e b1,f e b2)
| ARec (fk,idl,dll,tl,bl) ->
let e,dll = array_fold_map (list_fold_map (fun e (na,oc,b) ->
let e,na = g e na in
(e,(na,Explicit,Option.map (f e) oc,f e b)))) e dll in
let e',idl = array_fold_map (to_id g) e idl in
GRec (loc,fk,idl,dll,Array.map (f e) tl,Array.map (f e') bl)
| ACast (c,k) -> GCast (loc,f e c,
match k with
| CastConv (k,t) -> CastConv (k,f e t)
| CastCoerce -> CastCoerce)
| ASort x -> GSort (loc,x)
| AHole x -> GHole (loc,x)
| APatVar n -> GPatVar (loc,(false,n))
| ARef x -> GRef (loc,x)
let rec glob_constr_of_aconstr loc x =
let rec aux () x =
glob_constr_of_aconstr_with_binders loc (fun () id -> ((),id)) aux () x
in aux () x
(****************************************************************************)
(* Translating a glob_constr into a notation, interpreting recursive patterns *)
let add_id r id = r := (id :: pi1 !r, pi2 !r, pi3 !r)
let add_name r = function Anonymous -> () | Name id -> add_id r id
let split_at_recursive_part c =
let sub = ref None in
let rec aux = function
| GApp (loc0,GVar(loc,v),c::l) when v = ldots_var ->
if !sub <> None then
(* Not narrowed enough to find only one recursive part *)
raise Not_found
else
(sub := Some c;
if l = [] then GVar (loc,ldots_var)
else GApp (loc0,GVar (loc,ldots_var),l))
| c -> map_glob_constr aux c in
let outer_iterator = aux c in
match !sub with
| None -> (* No recursive pattern found *) raise Not_found
| Some c ->
match outer_iterator with
| GVar (_,v) when v = ldots_var -> (* Not enough context *) raise Not_found
| _ -> outer_iterator, c
let on_true_do b f c = if b then (f c; b) else b
let compare_glob_constr f add t1 t2 = match t1,t2 with
| GRef (_,r1), GRef (_,r2) -> eq_gr r1 r2
| GVar (_,v1), GVar (_,v2) -> on_true_do (v1 = v2) add (Name v1)
| GApp (_,f1,l1), GApp (_,f2,l2) -> f f1 f2 & list_for_all2eq f l1 l2
| GLambda (_,na1,bk1,ty1,c1), GLambda (_,na2,bk2,ty2,c2) when na1 = na2 && bk1 = bk2 -> on_true_do (f ty1 ty2 & f c1 c2) add na1
| GProd (_,na1,bk1,ty1,c1), GProd (_,na2,bk2,ty2,c2) when na1 = na2 && bk1 = bk2 ->
on_true_do (f ty1 ty2 & f c1 c2) add na1
| GHole _, GHole _ -> true
| GSort (_,s1), GSort (_,s2) -> s1 = s2
| GLetIn (_,na1,b1,c1), GLetIn (_,na2,b2,c2) when na1 = na2 ->
on_true_do (f b1 b2 & f c1 c2) add na1
| (GCases _ | GRec _
| GPatVar _ | GEvar _ | GLetTuple _ | GIf _ | GCast _),_
| _,(GCases _ | GRec _
| GPatVar _ | GEvar _ | GLetTuple _ | GIf _ | GCast _)
-> error "Unsupported construction in recursive notations."
| (GRef _ | GVar _ | GApp _ | GLambda _ | GProd _
| GHole _ | GSort _ | GLetIn _), _
-> false
let rec eq_glob_constr t1 t2 = compare_glob_constr eq_glob_constr (fun _ -> ()) t1 t2
let subtract_loc loc1 loc2 = make_loc (fst (unloc loc1),fst (unloc loc2)-1)
let check_is_hole id = function GHole _ -> () | t ->
user_err_loc (loc_of_glob_constr t,"",
strbrk "In recursive notation with binders, " ++ pr_id id ++
strbrk " is expected to come without type.")
let compare_recursive_parts found f (iterator,subc) =
let diff = ref None in
let terminator = ref None in
let rec aux c1 c2 = match c1,c2 with
| GVar(_,v), term when v = ldots_var ->
(* We found the pattern *)
assert (!terminator = None); terminator := Some term;
true
| GApp (_,GVar(_,v),l1), GApp (_,term,l2) when v = ldots_var ->
(* We found the pattern, but there are extra arguments *)
(* (this allows e.g. alternative (recursive) notation of application) *)
assert (!terminator = None); terminator := Some term;
list_for_all2eq aux l1 l2
| GVar (_,x), GVar (_,y) when x<>y ->
(* We found the position where it differs *)
let lassoc = (!terminator <> None) in
let x,y = if lassoc then y,x else x,y in
!diff = None && (diff := Some (x,y,Some lassoc); true)
| GLambda (_,Name x,_,t_x,c), GLambda (_,Name y,_,t_y,term)
| GProd (_,Name x,_,t_x,c), GProd (_,Name y,_,t_y,term) ->
(* We found a binding position where it differs *)
check_is_hole y t_x;
check_is_hole y t_y;
!diff = None && (diff := Some (x,y,None); aux c term)
| _ ->
compare_glob_constr aux (add_name found) c1 c2 in
if aux iterator subc then
match !diff with
| None ->
let loc1 = loc_of_glob_constr iterator in
let loc2 = loc_of_glob_constr (Option.get !terminator) in
(* Here, we would need a loc made of several parts ... *)
user_err_loc (subtract_loc loc1 loc2,"",
str "Both ends of the recursive pattern are the same.")
| Some (x,y,Some lassoc) ->
let newfound = (pi1 !found, (x,y) :: pi2 !found, pi3 !found) in
let iterator =
f (if lassoc then subst_glob_vars [y,GVar(dummy_loc,x)] iterator
else iterator) in
(* found have been collected by compare_constr *)
found := newfound;
AList (x,y,iterator,f (Option.get !terminator),lassoc)
| Some (x,y,None) ->
let newfound = (pi1 !found, pi2 !found, (x,y) :: pi3 !found) in
let iterator = f iterator in
(* found have been collected by compare_constr *)
found := newfound;
ABinderList (x,y,iterator,f (Option.get !terminator))
else
raise Not_found
let aconstr_and_vars_of_glob_constr a =
let found = ref ([],[],[]) in
let rec aux c =
let keepfound = !found in
(* n^2 complexity but small and done only once per notation *)
try compare_recursive_parts found aux' (split_at_recursive_part c)
with Not_found ->
found := keepfound;
match c with
| GApp (_,GVar (loc,f),[c]) when f = ldots_var ->
(* Fall on the second part of the recursive pattern w/o having
found the first part *)
user_err_loc (loc,"",
str "Cannot find where the recursive pattern starts.")
| c ->
aux' c
and aux' = function
| GVar (_,id) -> add_id found id; AVar id
| GApp (_,g,args) -> AApp (aux g, List.map aux args)
| GLambda (_,na,bk,ty,c) -> add_name found na; ALambda (na,aux ty,aux c)
| GProd (_,na,bk,ty,c) -> add_name found na; AProd (na,aux ty,aux c)
| GLetIn (_,na,b,c) -> add_name found na; ALetIn (na,aux b,aux c)
| GCases (_,sty,rtntypopt,tml,eqnl) ->
let f (_,idl,pat,rhs) = List.iter (add_id found) idl; (pat,aux rhs) in
ACases (sty,Option.map aux rtntypopt,
List.map (fun (tm,(na,x)) ->
add_name found na;
Option.iter
(fun (_,_,_,nl) -> List.iter (add_name found) nl) x;
(aux tm,(na,Option.map (fun (_,ind,n,nal) -> (ind,n,nal)) x))) tml,
List.map f eqnl)
| GLetTuple (loc,nal,(na,po),b,c) ->
add_name found na;
List.iter (add_name found) nal;
ALetTuple (nal,(na,Option.map aux po),aux b,aux c)
| GIf (loc,c,(na,po),b1,b2) ->
add_name found na;
AIf (aux c,(na,Option.map aux po),aux b1,aux b2)
| GRec (_,fk,idl,dll,tl,bl) ->
Array.iter (add_id found) idl;
let dll = Array.map (List.map (fun (na,bk,oc,b) ->
if bk <> Explicit then
error "Binders marked as implicit not allowed in notations.";
add_name found na; (na,Option.map aux oc,aux b))) dll in
ARec (fk,idl,dll,Array.map aux tl,Array.map aux bl)
| GCast (_,c,k) -> ACast (aux c,
match k with CastConv (k,t) -> CastConv (k,aux t)
| CastCoerce -> CastCoerce)
| GSort (_,s) -> ASort s
| GHole (_,w) -> AHole w
| GRef (_,r) -> ARef r
| GPatVar (_,(_,n)) -> APatVar n
| GEvar _ ->
error "Existential variables not allowed in notations."
in
let t = aux a in
(* Side effect *)
t, !found
let rec list_rev_mem_assoc x = function
| [] -> false
| (_,x')::l -> x = x' || list_rev_mem_assoc x l
let check_variables vars recvars (found,foundrec,foundrecbinding) =
let useless_vars = List.map snd recvars in
let vars = List.filter (fun (y,_) -> not (List.mem y useless_vars)) vars in
let check_recvar x =
if List.mem x found then
errorlabstrm "" (pr_id x ++
strbrk " should only be used in the recursive part of a pattern.") in
List.iter (fun (x,y) -> check_recvar x; check_recvar y)
(foundrec@foundrecbinding);
let check_bound x =
if not (List.mem x found) then
if List.mem_assoc x foundrec or List.mem_assoc x foundrecbinding
or list_rev_mem_assoc x foundrec or list_rev_mem_assoc x foundrecbinding
then
error ((string_of_id x)^" should not be bound in a recursive pattern of the right-hand side.")
else
error ((string_of_id x)^" is unbound in the right-hand side.") in
let check_pair s x y where =
if not (List.mem (x,y) where) then
errorlabstrm "" (strbrk "in the right-hand side, " ++ pr_id x ++
str " and " ++ pr_id y ++ strbrk " should appear in " ++ str s ++
str " position as part of a recursive pattern.") in
let check_type (x,typ) =
match typ with
| NtnInternTypeConstr ->
begin
try check_pair "term" x (List.assoc x recvars) foundrec
with Not_found -> check_bound x
end
| NtnInternTypeBinder ->
begin
try check_pair "binding" x (List.assoc x recvars) foundrecbinding
with Not_found -> check_bound x
end
| NtnInternTypeIdent -> check_bound x in
List.iter check_type vars
let aconstr_of_glob_constr vars recvars a =
let a,found = aconstr_and_vars_of_glob_constr a in
check_variables vars recvars found;
a
(* Substitution of kernel names, avoiding a list of bound identifiers *)
let aconstr_of_constr avoiding t =
aconstr_of_glob_constr [] [] (Detyping.detype false avoiding [] t)
let rec subst_pat subst pat =
match pat with
| PatVar _ -> pat
| PatCstr (loc,((kn,i),j),cpl,n) ->
let kn' = subst_ind subst kn
and cpl' = list_smartmap (subst_pat subst) cpl in
if kn' == kn && cpl' == cpl then pat else
PatCstr (loc,((kn',i),j),cpl',n)
let rec subst_aconstr subst bound raw =
match raw with
| ARef ref ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
aconstr_of_constr bound t
| AVar _ -> raw
| AApp (r,rl) ->
let r' = subst_aconstr subst bound r
and rl' = list_smartmap (subst_aconstr subst bound) rl in
if r' == r && rl' == rl then raw else
AApp(r',rl')
| AList (id1,id2,r1,r2,b) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
AList (id1,id2,r1',r2',b)
| ALambda (n,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ALambda (n,r1',r2')
| AProd (n,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
AProd (n,r1',r2')
| ABinderList (id1,id2,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ABinderList (id1,id2,r1',r2')
| ALetIn (n,r1,r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ALetIn (n,r1',r2')
| ACases (sty,rtntypopt,rl,branches) ->
let rtntypopt' = Option.smartmap (subst_aconstr subst bound) rtntypopt
and rl' = list_smartmap
(fun (a,(n,signopt) as x) ->
let a' = subst_aconstr subst bound a in
let signopt' = Option.map (fun ((indkn,i),n,nal as z) ->
let indkn' = subst_ind subst indkn in
if indkn == indkn' then z else ((indkn',i),n,nal)) signopt in
if a' == a && signopt' == signopt then x else (a',(n,signopt')))
rl
and branches' = list_smartmap
(fun (cpl,r as branch) ->
let cpl' = list_smartmap (subst_pat subst) cpl
and r' = subst_aconstr subst bound r in
if cpl' == cpl && r' == r then branch else
(cpl',r'))
branches
in
if rtntypopt' == rtntypopt && rtntypopt == rtntypopt' &
rl' == rl && branches' == branches then raw else
ACases (sty,rtntypopt',rl',branches')
| ALetTuple (nal,(na,po),b,c) ->
let po' = Option.smartmap (subst_aconstr subst bound) po
and b' = subst_aconstr subst bound b
and c' = subst_aconstr subst bound c in
if po' == po && b' == b && c' == c then raw else
ALetTuple (nal,(na,po'),b',c')
| AIf (c,(na,po),b1,b2) ->
let po' = Option.smartmap (subst_aconstr subst bound) po
and b1' = subst_aconstr subst bound b1
and b2' = subst_aconstr subst bound b2
and c' = subst_aconstr subst bound c in
if po' == po && b1' == b1 && b2' == b2 && c' == c then raw else
AIf (c',(na,po'),b1',b2')
| ARec (fk,idl,dll,tl,bl) ->
let dll' =
array_smartmap (list_smartmap (fun (na,oc,b as x) ->
let oc' = Option.smartmap (subst_aconstr subst bound) oc in
let b' = subst_aconstr subst bound b in
if oc' == oc && b' == b then x else (na,oc',b'))) dll in
let tl' = array_smartmap (subst_aconstr subst bound) tl in
let bl' = array_smartmap (subst_aconstr subst bound) bl in
if dll' == dll && tl' == tl && bl' == bl then raw else
ARec (fk,idl,dll',tl',bl')
| APatVar _ | ASort _ -> raw
| AHole (Evd.ImplicitArg (ref,i,b)) ->
let ref',t = subst_global subst ref in
if ref' == ref then raw else
AHole (Evd.InternalHole)
| AHole (Evd.BinderType _ | Evd.QuestionMark _ | Evd.CasesType
| Evd.InternalHole | Evd.TomatchTypeParameter _ | Evd.GoalEvar
| Evd.ImpossibleCase | Evd.MatchingVar _) -> raw
| ACast (r1,k) ->
match k with
CastConv (k, r2) ->
let r1' = subst_aconstr subst bound r1
and r2' = subst_aconstr subst bound r2 in
if r1' == r1 && r2' == r2 then raw else
ACast (r1',CastConv (k,r2'))
| CastCoerce ->
let r1' = subst_aconstr subst bound r1 in
if r1' == r1 then raw else
ACast (r1',CastCoerce)
let subst_interpretation subst (metas,pat) =
let bound = List.map fst metas in
(metas,subst_aconstr subst bound pat)
(* Pattern-matching glob_constr and aconstr *)
let abstract_return_type_context pi mklam tml rtno =
Option.map (fun rtn ->
let nal =
List.flatten (List.map (fun (_,(na,t)) ->
match t with Some x -> (pi x)@[na] | None -> [na]) tml) in
List.fold_right mklam nal rtn)
rtno
let abstract_return_type_context_glob_constr =
abstract_return_type_context (fun (_,_,_,nal) -> nal)
(fun na c -> GLambda(dummy_loc,na,Explicit,GHole(dummy_loc,Evd.InternalHole),c))
let abstract_return_type_context_aconstr =
abstract_return_type_context pi3
(fun na c -> ALambda(na,AHole Evd.InternalHole,c))
exception No_match
let rec alpha_var id1 id2 = function
| (i1,i2)::_ when i1=id1 -> i2 = id2
| (i1,i2)::_ when i2=id2 -> i1 = id1
| _::idl -> alpha_var id1 id2 idl
| [] -> id1 = id2
let alpha_eq_val (x,y) = x = y
let bind_env alp (sigma,sigmalist,sigmabinders as fullsigma) var v =
try
let vvar = List.assoc var sigma in
if alpha_eq_val (v,vvar) then fullsigma
else raise No_match
with Not_found ->
(* Check that no capture of binding variables occur *)
if List.exists (fun (id,_) ->occur_glob_constr id v) alp then raise No_match;
(* TODO: handle the case of multiple occs in different scopes *)
((var,v)::sigma,sigmalist,sigmabinders)
let bind_binder (sigma,sigmalist,sigmabinders) x bl =
(sigma,sigmalist,(x,List.rev bl)::sigmabinders)
let match_fix_kind fk1 fk2 =
match (fk1,fk2) with
| GCoFix n1, GCoFix n2 -> n1 = n2
| GFix (nl1,n1), GFix (nl2,n2) ->
n1 = n2 &&
array_for_all2 (fun (n1,_) (n2,_) -> n2 = None || n1 = n2) nl1 nl2
| _ -> false
let match_opt f sigma t1 t2 = match (t1,t2) with
| None, None -> sigma
| Some t1, Some t2 -> f sigma t1 t2
| _ -> raise No_match
let match_names metas (alp,sigma) na1 na2 = match (na1,na2) with
| (Name id1,Name id2) when List.mem id2 (fst metas) ->
alp, bind_env alp sigma id2 (GVar (dummy_loc,id1))
| (Name id1,Name id2) -> (id1,id2)::alp,sigma
| (Anonymous,Anonymous) -> alp,sigma
| _ -> raise No_match
let rec match_cases_pattern_binders metas acc pat1 pat2 =
match (pat1,pat2) with
| PatVar (_,na1), PatVar (_,na2) -> match_names metas acc na1 na2
| PatCstr (_,c1,patl1,na1), PatCstr (_,c2,patl2,na2)
when c1 = c2 & List.length patl1 = List.length patl2 ->
List.fold_left2 (match_cases_pattern_binders metas)
(match_names metas acc na1 na2) patl1 patl2
| _ -> raise No_match
let glue_letin_with_decls = true
let rec match_iterated_binders islambda decls = function
| GLambda (_,na,bk,t,b) when islambda ->
match_iterated_binders islambda ((na,bk,None,t)::decls) b
| GProd (_,(Name _ as na),bk,t,b) when not islambda ->
match_iterated_binders islambda ((na,bk,None,t)::decls) b
| GLetIn (loc,na,c,b) when glue_letin_with_decls ->
match_iterated_binders islambda
((na,Explicit (*?*), Some c,GHole(loc,Evd.BinderType na))::decls) b
| b -> (decls,b)
let remove_sigma x (sigmavar,sigmalist,sigmabinders) =
(List.remove_assoc x sigmavar,sigmalist,sigmabinders)
let rec match_abinderlist_with_app match_fun metas sigma rest x iter termin =
let rec aux sigma acc rest =
try
let sigma = match_fun (ldots_var::fst metas,snd metas) sigma rest iter in
let rest = List.assoc ldots_var (pi1 sigma) in
let b = match List.assoc x (pi3 sigma) with [b] -> b | _ ->assert false in
let sigma = remove_sigma x (remove_sigma ldots_var sigma) in
aux sigma (b::acc) rest
with No_match when acc <> [] ->
acc, match_fun metas sigma rest termin in
let bl,sigma = aux sigma [] rest in
bind_binder sigma x bl
let match_alist match_fun metas sigma rest x iter termin lassoc =
let rec aux sigma acc rest =
try
let sigma = match_fun (ldots_var::fst metas,snd metas) sigma rest iter in
let rest = List.assoc ldots_var (pi1 sigma) in
let t = List.assoc x (pi1 sigma) in
let sigma = remove_sigma x (remove_sigma ldots_var sigma) in
aux sigma (t::acc) rest
with No_match when acc <> [] ->
acc, match_fun metas sigma rest termin in
let l,sigma = aux sigma [] rest in
(pi1 sigma, (x,if lassoc then l else List.rev l)::pi2 sigma, pi3 sigma)
let does_not_come_from_already_eta_expanded_var =
(* This is hack to avoid looping on a rule with rhs of the form *)
(* "?f (fun ?x => ?g)" since otherwise, matching "F H" expands in *)
(* "F (fun x => H x)" and "H x" is recursively matched against the same *)
(* rule, giving "H (fun x' => x x')" and so on. *)
(* Ideally, we would need the type of the expression to know which of *)
(* the arguments applied to it can be eta-expanded without looping. *)
(* The following test is then an approximation of what can be done *)
(* optimally (whether other looping situations can occur remains to be *)
(* checked). *)
function GVar _ -> false | _ -> true
let rec match_ inner u alp (tmetas,blmetas as metas) sigma a1 a2 =
match (a1,a2) with
(* Matching notation variable *)
| r1, AVar id2 when List.mem id2 tmetas -> bind_env alp sigma id2 r1
(* Matching recursive notations for terms *)
| r1, AList (x,_,iter,termin,lassoc) ->
match_alist (match_hd u alp) metas sigma r1 x iter termin lassoc
(* Matching recursive notations for binders: ad hoc cases supporting let-in *)
| GLambda (_,na1,bk,t1,b1), ABinderList (x,_,ALambda (Name id2,_,b2),termin)->
let (decls,b) = match_iterated_binders true [(na1,bk,None,t1)] b1 in
(* TODO: address the possibility that termin is a Lambda itself *)
match_in u alp metas (bind_binder sigma x decls) b termin
| GProd (_,na1,bk,t1,b1), ABinderList (x,_,AProd (Name id2,_,b2),termin)
when na1 <> Anonymous ->
let (decls,b) = match_iterated_binders false [(na1,bk,None,t1)] b1 in
(* TODO: address the possibility that termin is a Prod itself *)
match_in u alp metas (bind_binder sigma x decls) b termin
(* Matching recursive notations for binders: general case *)
| r, ABinderList (x,_,iter,termin) ->
match_abinderlist_with_app (match_hd u alp) metas sigma r x iter termin
(* Matching individual binders as part of a recursive pattern *)
| GLambda (_,na,bk,t,b1), ALambda (Name id,_,b2) when List.mem id blmetas ->
match_in u alp metas (bind_binder sigma id [(na,bk,None,t)]) b1 b2
| GProd (_,na,bk,t,b1), AProd (Name id,_,b2)
when List.mem id blmetas & na <> Anonymous ->
match_in u alp metas (bind_binder sigma id [(na,bk,None,t)]) b1 b2
(* Matching compositionally *)
| GVar (_,id1), AVar id2 when alpha_var id1 id2 alp -> sigma
| GRef (_,r1), ARef r2 when (eq_gr r1 r2) -> sigma
| GPatVar (_,(_,n1)), APatVar n2 when n1=n2 -> sigma
| GApp (loc,f1,l1), AApp (f2,l2) ->
let n1 = List.length l1 and n2 = List.length l2 in
let f1,l1,f2,l2 =
if n1 < n2 then
let l21,l22 = list_chop (n2-n1) l2 in f1,l1, AApp (f2,l21), l22
else if n1 > n2 then
let l11,l12 = list_chop (n1-n2) l1 in GApp (loc,f1,l11),l12, f2,l2
else f1,l1, f2, l2 in
let may_use_eta = does_not_come_from_already_eta_expanded_var f1 in
List.fold_left2 (match_ may_use_eta u alp metas)
(match_in u alp metas sigma f1 f2) l1 l2
| GLambda (_,na1,_,t1,b1), ALambda (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GProd (_,na1,_,t1,b1), AProd (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GLetIn (_,na1,t1,b1), ALetIn (na2,t2,b2) ->
match_binders u alp metas na1 na2 (match_in u alp metas sigma t1 t2) b1 b2
| GCases (_,sty1,rtno1,tml1,eqnl1), ACases (sty2,rtno2,tml2,eqnl2)
when sty1 = sty2
& List.length tml1 = List.length tml2
& List.length eqnl1 = List.length eqnl2 ->
let rtno1' = abstract_return_type_context_glob_constr tml1 rtno1 in
let rtno2' = abstract_return_type_context_aconstr tml2 rtno2 in
let sigma =
try Option.fold_left2 (match_in u alp metas) sigma rtno1' rtno2'
with Option.Heterogeneous -> raise No_match
in
let sigma = List.fold_left2
(fun s (tm1,_) (tm2,_) ->
match_in u alp metas s tm1 tm2) sigma tml1 tml2 in
List.fold_left2 (match_equations u alp metas) sigma eqnl1 eqnl2
| GLetTuple (_,nal1,(na1,to1),b1,c1), ALetTuple (nal2,(na2,to2),b2,c2)
when List.length nal1 = List.length nal2 ->
let sigma = match_opt (match_binders u alp metas na1 na2) sigma to1 to2 in
let sigma = match_in u alp metas sigma b1 b2 in
let (alp,sigma) =
List.fold_left2 (match_names metas) (alp,sigma) nal1 nal2 in
match_in u alp metas sigma c1 c2
| GIf (_,a1,(na1,to1),b1,c1), AIf (a2,(na2,to2),b2,c2) ->
let sigma = match_opt (match_binders u alp metas na1 na2) sigma to1 to2 in
List.fold_left2 (match_in u alp metas) sigma [a1;b1;c1] [a2;b2;c2]
| GRec (_,fk1,idl1,dll1,tl1,bl1), ARec (fk2,idl2,dll2,tl2,bl2)
when match_fix_kind fk1 fk2 & Array.length idl1 = Array.length idl2 &
array_for_all2 (fun l1 l2 -> List.length l1 = List.length l2) dll1 dll2
->
let alp,sigma = array_fold_left2
(List.fold_left2 (fun (alp,sigma) (na1,_,oc1,b1) (na2,oc2,b2) ->
let sigma =
match_in u alp metas
(match_opt (match_in u alp metas) sigma oc1 oc2) b1 b2
in match_names metas (alp,sigma) na1 na2)) (alp,sigma) dll1 dll2 in
let sigma = array_fold_left2 (match_in u alp metas) sigma tl1 tl2 in
let alp,sigma = array_fold_right2 (fun id1 id2 alsig ->
match_names metas alsig (Name id1) (Name id2)) idl1 idl2 (alp,sigma) in
array_fold_left2 (match_in u alp metas) sigma bl1 bl2
| GCast(_,c1, CastConv(_,t1)), ACast(c2, CastConv (_,t2)) ->
match_in u alp metas (match_in u alp metas sigma c1 c2) t1 t2
| GCast(_,c1, CastCoerce), ACast(c2, CastCoerce) ->
match_in u alp metas sigma c1 c2
| GSort (_,GType _), ASort (GType None) when not u -> sigma
| GSort (_,s1), ASort s2 when s1 = s2 -> sigma
| GPatVar _, AHole _ -> (*Don't hide Metas, they bind in ltac*) raise No_match
| a, AHole _ -> sigma
(* On the fly eta-expansion so as to use notations of the form
"exists x, P x" for "ex P"; expects type not given because don't know
otherwise how to ensure it corresponds to a well-typed eta-expansion;
ensure at least one constructor is consumed to avoid looping *)
| b1, ALambda (Name id,AHole _,b2) when inner ->
let id' = Namegen.next_ident_away id (free_glob_vars b1) in
match_in u alp metas (bind_binder sigma id
[(Name id',Explicit,None,GHole(dummy_loc,Evd.BinderType (Name id')))])
(mkGApp dummy_loc b1 (GVar (dummy_loc,id'))) b2
| (GRec _ | GEvar _), _
| _,_ -> raise No_match
and match_in u = match_ true u
and match_hd u = match_ false u
and match_binders u alp metas na1 na2 sigma b1 b2 =
let (alp,sigma) = match_names metas (alp,sigma) na1 na2 in
match_in u alp metas sigma b1 b2
and match_equations u alp metas sigma (_,_,patl1,rhs1) (patl2,rhs2) =
(* patl1 and patl2 have the same length because they respectively
correspond to some tml1 and tml2 that have the same length *)
let (alp,sigma) =
List.fold_left2 (match_cases_pattern_binders metas)
(alp,sigma) patl1 patl2 in
match_in u alp metas sigma rhs1 rhs2
let match_aconstr u c (metas,pat) =
let vars = list_split_by (fun (_,(_,x)) -> x <> NtnTypeBinderList) metas in
let vars = (List.map fst (fst vars), List.map fst (snd vars)) in
let terms,termlists,binders = match_ false u [] vars ([],[],[]) c pat in
(* Reorder canonically the substitution *)
let find x =
try List.assoc x terms
with Not_found ->
(* Happens for binders bound to Anonymous *)
(* Find a better way to propagate Anonymous... *)
GVar (dummy_loc,x) in
List.fold_right (fun (x,(scl,typ)) (terms',termlists',binders') ->
match typ with
| NtnTypeConstr ->
((find x, scl)::terms',termlists',binders')
| NtnTypeConstrList ->
(terms',(List.assoc x termlists,scl)::termlists',binders')
| NtnTypeBinderList ->
(terms',termlists',(List.assoc x binders,scl)::binders'))
metas ([],[],[])
(* Matching cases pattern *)
let bind_env_cases_pattern (sigma,sigmalist,x as fullsigma) var v =
try
let vvar = List.assoc var sigma in
if v=vvar then fullsigma else raise No_match
with Not_found ->
(* TODO: handle the case of multiple occs in different scopes *)
(var,v)::sigma,sigmalist,x
let rec match_cases_pattern metas sigma a1 a2 = match (a1,a2) with
| r1, AVar id2 when List.mem id2 metas -> bind_env_cases_pattern sigma id2 r1
| PatVar (_,Anonymous), AHole _ -> sigma
| PatCstr (loc,(ind,_ as r1),[],_), ARef (ConstructRef r2) when r1 = r2 ->
sigma
| PatCstr (loc,(ind,_ as r1),args1,_), AApp (ARef (ConstructRef r2),l2)
when r1 = r2 ->
let nparams = Inductive.inductive_params (Global.lookup_inductive ind) in
if List.length l2 <> nparams + List.length args1
then
(* TODO: revert partially applied notations of the form
"Notation P := (@pair)." *)
raise No_match
else
let (p2,args2) = list_chop nparams l2 in
(* All parameters must be _ *)
List.iter (function AHole _ -> () | _ -> raise No_match) p2;
List.fold_left2 (match_cases_pattern metas) sigma args1 args2
| r1, AList (x,_,iter,termin,lassoc) ->
match_alist (fun (metas,_) -> match_cases_pattern metas)
(metas,[]) (pi1 sigma,pi2 sigma,()) r1 x iter termin lassoc
| _ -> raise No_match
let match_aconstr_cases_pattern c (metas,pat) =
let vars = List.map fst metas in
let terms,termlists,() = match_cases_pattern vars ([],[],()) c pat in
(* Reorder canonically the substitution *)
List.fold_right (fun (x,(scl,typ)) (terms',termlists') ->
match typ with
| NtnTypeConstr -> ((List.assoc x terms, scl)::terms',termlists')
| NtnTypeConstrList -> (terms',(List.assoc x termlists,scl)::termlists')
| NtnTypeBinderList -> assert false)
metas ([],[])
(**********************************************************************)
(*s Concrete syntax for terms *)
type notation = string
type explicitation = ExplByPos of int * identifier option | ExplByName of identifier
type binder_kind = Default of binding_kind | Generalized of binding_kind * binding_kind * bool
type abstraction_kind = AbsLambda | AbsPi
type proj_flag = int option (* [Some n] = proj of the n-th visible argument *)
type prim_token = Numeral of Bigint.bigint | String of string
type cases_pattern_expr =
| CPatAlias of loc * cases_pattern_expr * identifier
| CPatCstr of loc * reference * cases_pattern_expr list
| CPatCstrExpl of loc * reference * cases_pattern_expr list
| CPatAtom of loc * reference option
| CPatOr of loc * cases_pattern_expr list
| CPatNotation of loc * notation * cases_pattern_notation_substitution
| CPatPrim of loc * prim_token
| CPatRecord of Util.loc * (reference * cases_pattern_expr) list
| CPatDelimiters of loc * string * cases_pattern_expr
and cases_pattern_notation_substitution =
cases_pattern_expr list * (** for constr subterms *)
cases_pattern_expr list list (** for recursive notations *)
type constr_expr =
| CRef of reference
| CFix of loc * identifier located * fix_expr list
| CCoFix of loc * identifier located * cofix_expr list
| CArrow of loc * constr_expr * constr_expr
| CProdN of loc * (name located list * binder_kind * constr_expr) list * constr_expr
| CLambdaN of loc * (name located list * binder_kind * constr_expr) list * constr_expr
| CLetIn of loc * name located * constr_expr * constr_expr
| CAppExpl of loc * (proj_flag * reference) * constr_expr list
| CApp of loc * (proj_flag * constr_expr) *
(constr_expr * explicitation located option) list
| CRecord of loc * constr_expr option * (reference * constr_expr) list
| CCases of loc * case_style * constr_expr option *
(constr_expr * (name located option * constr_expr option)) list *
(loc * cases_pattern_expr list located list * constr_expr) list
| CLetTuple of loc * name located list * (name located option * constr_expr option) *
constr_expr * constr_expr
| CIf of loc * constr_expr * (name located option * constr_expr option)
* constr_expr * constr_expr
| CHole of loc * Evd.hole_kind option
| CPatVar of loc * (bool * patvar)
| CEvar of loc * existential_key * constr_expr list option
| CSort of loc * glob_sort
| CCast of loc * constr_expr * constr_expr cast_type
| CNotation of loc * notation * constr_notation_substitution
| CGeneralization of loc * binding_kind * abstraction_kind option * constr_expr
| CPrim of loc * prim_token
| CDelimiters of loc * string * constr_expr
and fix_expr =
identifier located * (identifier located option * recursion_order_expr) * local_binder list * constr_expr * constr_expr
and cofix_expr =
identifier located * local_binder list * constr_expr * constr_expr
and recursion_order_expr =
| CStructRec
| CWfRec of constr_expr
| CMeasureRec of constr_expr * constr_expr option (* measure, relation *)
and local_binder =
| LocalRawDef of name located * constr_expr
| LocalRawAssum of name located list * binder_kind * constr_expr
and constr_notation_substitution =
constr_expr list * (* for constr subterms *)
constr_expr list list * (* for recursive notations *)
local_binder list list (* for binders subexpressions *)
type typeclass_constraint = name located * binding_kind * constr_expr
and typeclass_context = typeclass_constraint list
type constr_pattern_expr = constr_expr
(***********************)
(* For binders parsing *)
let default_binder_kind = Default Explicit
let names_of_local_assums bl =
List.flatten (List.map (function LocalRawAssum(l,_,_)->l|_->[]) bl)
let names_of_local_binders bl =
List.flatten (List.map (function LocalRawAssum(l,_,_)->l|LocalRawDef(l,_)->[l]) bl)
(**********************************************************************)
(* Functions on constr_expr *)
let constr_loc = function
| CRef (Ident (loc,_)) -> loc
| CRef (Qualid (loc,_)) -> loc
| CFix (loc,_,_) -> loc
| CCoFix (loc,_,_) -> loc
| CArrow (loc,_,_) -> loc
| CProdN (loc,_,_) -> loc
| CLambdaN (loc,_,_) -> loc
| CLetIn (loc,_,_,_) -> loc
| CAppExpl (loc,_,_) -> loc
| CApp (loc,_,_) -> loc
| CRecord (loc,_,_) -> loc
| CCases (loc,_,_,_,_) -> loc
| CLetTuple (loc,_,_,_,_) -> loc
| CIf (loc,_,_,_,_) -> loc
| CHole (loc, _) -> loc
| CPatVar (loc,_) -> loc
| CEvar (loc,_,_) -> loc
| CSort (loc,_) -> loc
| CCast (loc,_,_) -> loc
| CNotation (loc,_,_) -> loc
| CGeneralization (loc,_,_,_) -> loc
| CPrim (loc,_) -> loc
| CDelimiters (loc,_,_) -> loc
let cases_pattern_expr_loc = function
| CPatAlias (loc,_,_) -> loc
| CPatCstr (loc,_,_) -> loc
| CPatCstrExpl (loc,_,_) -> loc
| CPatAtom (loc,_) -> loc
| CPatOr (loc,_) -> loc
| CPatNotation (loc,_,_) -> loc
| CPatRecord (loc, _) -> loc
| CPatPrim (loc,_) -> loc
| CPatDelimiters (loc,_,_) -> loc
let local_binder_loc = function
| LocalRawAssum ((loc,_)::_,_,t)
| LocalRawDef ((loc,_),t) -> join_loc loc (constr_loc t)
| LocalRawAssum ([],_,_) -> assert false
let local_binders_loc bll =
if bll = [] then dummy_loc else
join_loc (local_binder_loc (List.hd bll)) (local_binder_loc (list_last bll))
let ids_of_cases_indtype =
let add_var ids = function CRef (Ident (_,id)) -> id::ids | _ -> ids in
let rec vars_of = function
(* We deal only with the regular cases *)
| CApp (_,_,l) -> List.fold_left add_var [] (List.map fst l)
| CNotation (_,_,(l,[],[]))
(* assume the ntn is applicative and does not instantiate the head !! *)
| CAppExpl (_,_,l) -> List.fold_left add_var [] l
| CDelimiters(_,_,c) -> vars_of c
| _ -> [] in
vars_of
let ids_of_cases_tomatch tms =
List.fold_right
(fun (_,(ona,indnal)) l ->
Option.fold_right (fun t -> (@) (ids_of_cases_indtype t))
indnal (Option.fold_right (down_located name_cons) ona l))
tms []
let is_constructor id =
try ignore (Nametab.locate_extended (qualid_of_ident id)); true
with Not_found -> true
let rec cases_pattern_fold_names f a = function
| CPatRecord (_, l) ->
List.fold_left (fun acc (r, cp) -> cases_pattern_fold_names f acc cp) a l
| CPatAlias (_,pat,id) -> f id a
| CPatCstr (_,_,patl) | CPatCstrExpl (_,_,patl) | CPatOr (_,patl) ->
List.fold_left (cases_pattern_fold_names f) a patl
| CPatNotation (_,_,(patl,patll)) ->
List.fold_left (cases_pattern_fold_names f) a (patl@List.flatten patll)
| CPatDelimiters (_,_,pat) -> cases_pattern_fold_names f a pat
| CPatAtom (_,Some (Ident (_,id))) when not (is_constructor id) -> f id a
| CPatPrim _ | CPatAtom _ -> a
let ids_of_pattern_list =
List.fold_left
(located_fold_left
(List.fold_left (cases_pattern_fold_names Idset.add)))
Idset.empty
let rec fold_constr_expr_binders g f n acc b = function
| (nal,bk,t)::l ->
let nal = snd (List.split nal) in
let n' = List.fold_right (name_fold g) nal n in
f n (fold_constr_expr_binders g f n' acc b l) t
| [] ->
f n acc b
let rec fold_local_binders g f n acc b = function
| LocalRawAssum (nal,bk,t)::l ->
let nal = snd (List.split nal) in
let n' = List.fold_right (name_fold g) nal n in
f n (fold_local_binders g f n' acc b l) t
| LocalRawDef ((_,na),t)::l ->
f n (fold_local_binders g f (name_fold g na n) acc b l) t
| [] ->
f n acc b
let fold_constr_expr_with_binders g f n acc = function
| CArrow (loc,a,b) -> f n (f n acc a) b
| CAppExpl (loc,(_,_),l) -> List.fold_left (f n) acc l
| CApp (loc,(_,t),l) -> List.fold_left (f n) (f n acc t) (List.map fst l)
| CProdN (_,l,b) | CLambdaN (_,l,b) -> fold_constr_expr_binders g f n acc b l
| CLetIn (_,na,a,b) -> fold_constr_expr_binders g f n acc b [[na],default_binder_kind,a]
| CCast (loc,a,CastConv(_,b)) -> f n (f n acc a) b
| CCast (loc,a,CastCoerce) -> f n acc a
| CNotation (_,_,(l,ll,bll)) ->
(* The following is an approximation: we don't know exactly if
an ident is binding nor to which subterms bindings apply *)
let acc = List.fold_left (f n) acc (l@List.flatten ll) in
List.fold_left (fun acc bl -> fold_local_binders g f n acc (CHole (dummy_loc,None)) bl) acc bll
| CGeneralization (_,_,_,c) -> f n acc c
| CDelimiters (loc,_,a) -> f n acc a
| CHole _ | CEvar _ | CPatVar _ | CSort _ | CPrim _ | CRef _ ->
acc
| CRecord (loc,_,l) -> List.fold_left (fun acc (id, c) -> f n acc c) acc l
| CCases (loc,sty,rtnpo,al,bl) ->
let ids = ids_of_cases_tomatch al in
let acc = Option.fold_left (f (List.fold_right g ids n)) acc rtnpo in
let acc = List.fold_left (f n) acc (List.map fst al) in
List.fold_right (fun (loc,patl,rhs) acc ->
let ids = ids_of_pattern_list patl in
f (Idset.fold g ids n) acc rhs) bl acc
| CLetTuple (loc,nal,(ona,po),b,c) ->
let n' = List.fold_right (down_located (name_fold g)) nal n in
f (Option.fold_right (down_located (name_fold g)) ona n') (f n acc b) c
| CIf (_,c,(ona,po),b1,b2) ->
let acc = f n (f n (f n acc b1) b2) c in
Option.fold_left
(f (Option.fold_right (down_located (name_fold g)) ona n)) acc po
| CFix (loc,_,l) ->
let n' = List.fold_right (fun ((_,id),_,_,_,_) -> g id) l n in
List.fold_right (fun (_,(_,o),lb,t,c) acc ->
fold_local_binders g f n'
(fold_local_binders g f n acc t lb) c lb) l acc
| CCoFix (loc,_,_) ->
Pp.warning "Capture check in multiple binders not done"; acc
let free_vars_of_constr_expr c =
let rec aux bdvars l = function
| CRef (Ident (_,id)) -> if List.mem id bdvars then l else Idset.add id l
| c -> fold_constr_expr_with_binders (fun a l -> a::l) aux bdvars l c
in aux [] Idset.empty c
let occur_var_constr_expr id c = Idset.mem id (free_vars_of_constr_expr c)
let mkIdentC id = CRef (Ident (dummy_loc, id))
let mkRefC r = CRef r
let mkCastC (a,k) = CCast (dummy_loc,a,k)
let mkLambdaC (idl,bk,a,b) = CLambdaN (dummy_loc,[idl,bk,a],b)
let mkLetInC (id,a,b) = CLetIn (dummy_loc,id,a,b)
let mkProdC (idl,bk,a,b) = CProdN (dummy_loc,[idl,bk,a],b)
let mkAppC (f,l) =
let l = List.map (fun x -> (x,None)) l in
match f with
| CApp (_,g,l') -> CApp (dummy_loc, g, l' @ l)
| _ -> CApp (dummy_loc, (None, f), l)
let rec mkCProdN loc bll c =
match bll with
| LocalRawAssum ((loc1,_)::_ as idl,bk,t) :: bll ->
CProdN (loc,[idl,bk,t],mkCProdN (join_loc loc1 loc) bll c)
| LocalRawDef ((loc1,_) as id,b) :: bll ->
CLetIn (loc,id,b,mkCProdN (join_loc loc1 loc) bll c)
| [] -> c
| LocalRawAssum ([],_,_) :: bll -> mkCProdN loc bll c
let rec mkCLambdaN loc bll c =
match bll with
| LocalRawAssum ((loc1,_)::_ as idl,bk,t) :: bll ->
CLambdaN (loc,[idl,bk,t],mkCLambdaN (join_loc loc1 loc) bll c)
| LocalRawDef ((loc1,_) as id,b) :: bll ->
CLetIn (loc,id,b,mkCLambdaN (join_loc loc1 loc) bll c)
| [] -> c
| LocalRawAssum ([],_,_) :: bll -> mkCLambdaN loc bll c
let rec abstract_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,abstract_constr_expr c bl)
| LocalRawAssum (idl,bk,t)::bl ->
List.fold_right (fun x b -> mkLambdaC([x],bk,t,b)) idl
(abstract_constr_expr c bl)
let rec prod_constr_expr c = function
| [] -> c
| LocalRawDef (x,b)::bl -> mkLetInC(x,b,prod_constr_expr c bl)
| LocalRawAssum (idl,bk,t)::bl ->
List.fold_right (fun x b -> mkProdC([x],bk,t,b)) idl
(prod_constr_expr c bl)
let coerce_reference_to_id = function
| Ident (_,id) -> id
| Qualid (loc,_) ->
user_err_loc (loc, "coerce_reference_to_id",
str "This expression should be a simple identifier.")
let coerce_to_id = function
| CRef (Ident (loc,id)) -> (loc,id)
| a -> user_err_loc
(constr_loc a,"coerce_to_id",
str "This expression should be a simple identifier.")
let coerce_to_name = function
| CRef (Ident (loc,id)) -> (loc,Name id)
| CHole (loc,_) -> (loc,Anonymous)
| a -> user_err_loc
(constr_loc a,"coerce_to_name",
str "This expression should be a name.")
(* Interpret the index of a recursion order annotation *)
let split_at_annot bl na =
let names = List.map snd (names_of_local_assums bl) in
match na with
| None ->
if names = [] then error "A fixpoint needs at least one parameter."
else [], bl
| Some (loc, id) ->
let rec aux acc = function
| LocalRawAssum (bls, k, t) as x :: rest ->
let l, r = list_split_when (fun (loc, na) -> na = Name id) bls in
if r = [] then aux (x :: acc) rest
else
(List.rev (if l = [] then acc else LocalRawAssum (l, k, t) :: acc),
LocalRawAssum (r, k, t) :: rest)
| LocalRawDef _ as x :: rest -> aux (x :: acc) rest
| [] ->
user_err_loc(loc,"",
str "No parameter named " ++ Nameops.pr_id id ++ str".")
in aux [] bl
(* Used in correctness and interface *)
let map_binder g e nal = List.fold_right (down_located (name_fold g)) nal e
let map_binders f g e bl =
(* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *)
let h (e,bl) (nal,bk,t) = (map_binder g e nal,(nal,bk,f e t)::bl) in
let (e,rbl) = List.fold_left h (e,[]) bl in
(e, List.rev rbl)
let map_local_binders f g e bl =
(* TODO: avoid variable capture in [t] by some [na] in [List.tl nal] *)
let h (e,bl) = function
LocalRawAssum(nal,k,ty) ->
(map_binder g e nal, LocalRawAssum(nal,k,f e ty)::bl)
| LocalRawDef((loc,na),ty) ->
(name_fold g na e, LocalRawDef((loc,na),f e ty)::bl) in
let (e,rbl) = List.fold_left h (e,[]) bl in
(e, List.rev rbl)
let map_constr_expr_with_binders g f e = function
| CArrow (loc,a,b) -> CArrow (loc,f e a,f e b)
| CAppExpl (loc,r,l) -> CAppExpl (loc,r,List.map (f e) l)
| CApp (loc,(p,a),l) ->
CApp (loc,(p,f e a),List.map (fun (a,i) -> (f e a,i)) l)
| CProdN (loc,bl,b) ->
let (e,bl) = map_binders f g e bl in CProdN (loc,bl,f e b)
| CLambdaN (loc,bl,b) ->
let (e,bl) = map_binders f g e bl in CLambdaN (loc,bl,f e b)
| CLetIn (loc,na,a,b) -> CLetIn (loc,na,f e a,f (name_fold g (snd na) e) b)
| CCast (loc,a,CastConv (k,b)) -> CCast (loc,f e a,CastConv(k, f e b))
| CCast (loc,a,CastCoerce) -> CCast (loc,f e a,CastCoerce)
| CNotation (loc,n,(l,ll,bll)) ->
(* This is an approximation because we don't know what binds what *)
CNotation (loc,n,(List.map (f e) l,List.map (List.map (f e)) ll,
List.map (fun bl -> snd (map_local_binders f g e bl)) bll))
| CGeneralization (loc,b,a,c) -> CGeneralization (loc,b,a,f e c)
| CDelimiters (loc,s,a) -> CDelimiters (loc,s,f e a)
| CHole _ | CEvar _ | CPatVar _ | CSort _
| CPrim _ | CRef _ as x -> x
| CRecord (loc,p,l) -> CRecord (loc,p,List.map (fun (id, c) -> (id, f e c)) l)
| CCases (loc,sty,rtnpo,a,bl) ->
(* TODO: apply g on the binding variables in pat... *)
let bl = List.map (fun (loc,pat,rhs) -> (loc,pat,f e rhs)) bl in
let ids = ids_of_cases_tomatch a in
let po = Option.map (f (List.fold_right g ids e)) rtnpo in
CCases (loc, sty, po, List.map (fun (tm,x) -> (f e tm,x)) a,bl)
| CLetTuple (loc,nal,(ona,po),b,c) ->
let e' = List.fold_right (down_located (name_fold g)) nal e in
let e'' = Option.fold_right (down_located (name_fold g)) ona e in
CLetTuple (loc,nal,(ona,Option.map (f e'') po),f e b,f e' c)
| CIf (loc,c,(ona,po),b1,b2) ->
let e' = Option.fold_right (down_located (name_fold g)) ona e in
CIf (loc,f e c,(ona,Option.map (f e') po),f e b1,f e b2)
| CFix (loc,id,dl) ->
CFix (loc,id,List.map (fun (id,n,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
(* Note: fix names should be inserted before the arguments... *)
let e'' = List.fold_left (fun e ((_,id),_,_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,n,bl',t',d')) dl)
| CCoFix (loc,id,dl) ->
CCoFix (loc,id,List.map (fun (id,bl,t,d) ->
let (e',bl') = map_local_binders f g e bl in
let t' = f e' t in
let e'' = List.fold_left (fun e ((_,id),_,_,_) -> g id e) e' dl in
let d' = f e'' d in
(id,bl',t',d')) dl)
(* Used in constrintern *)
let rec replace_vars_constr_expr l = function
| CRef (Ident (loc,id)) as x ->
(try CRef (Ident (loc,List.assoc id l)) with Not_found -> x)
| c -> map_constr_expr_with_binders List.remove_assoc
replace_vars_constr_expr l c
(**********************************************************************)
(* Concrete syntax for modules and modules types *)
type with_declaration_ast =
| CWith_Module of identifier list located * qualid located
| CWith_Definition of identifier list located * constr_expr
type module_ast =
| CMident of qualid located
| CMapply of loc * module_ast * module_ast
| CMwith of loc * module_ast * with_declaration_ast
(* Returns the ranges of locs of the notation that are not occupied by args *)
(* and which are then occupied by proper symbols of the notation (or spaces) *)
let locs_of_notation loc locs ntn =
let (bl,el) = Util.unloc loc in
let locs = List.map Util.unloc locs in
let rec aux pos = function
| [] -> if pos = el then [] else [(pos,el-1)]
| (ba,ea)::l ->if pos = ba then aux ea l else (pos,ba-1)::aux ea l
in aux bl (Sort.list (fun l1 l2 -> fst l1 < fst l2) locs)
let ntn_loc loc (args,argslist,binderslist) =
locs_of_notation loc
(List.map constr_loc (args@List.flatten argslist)@
List.map local_binders_loc binderslist)
let patntn_loc loc (args,argslist) =
locs_of_notation loc
(List.map cases_pattern_expr_loc (args@List.flatten argslist))
|