1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: coqlib.ml 13332 2010-07-26 22:12:43Z msozeau $ *)
open Util
open Pp
open Names
open Term
open Libnames
open Pattern
open Nametab
open Smartlocate
(************************************************************************)
(* Generic functions to find Coq objects *)
type message = string
let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
let find_reference locstr dir s =
let sp = Libnames.make_path (make_dir dir) (id_of_string s) in
try global_of_extended_global (Nametab.extended_global_of_path sp)
with Not_found -> anomaly (locstr^": cannot find "^(string_of_path sp))
let coq_reference locstr dir s = find_reference locstr ("Coq"::dir) s
let coq_constant locstr dir s = constr_of_global (coq_reference locstr dir s)
let gen_reference = coq_reference
let gen_constant = coq_constant
let has_suffix_in_dirs dirs ref =
let dir = dirpath (path_of_global ref) in
List.exists (fun d -> is_dirpath_prefix_of d dir) dirs
let global_of_extended q =
try Some (global_of_extended_global q) with Not_found -> None
let gen_constant_in_modules locstr dirs s =
let dirs = List.map make_dir dirs in
let id = id_of_string s in
let all = Nametab.locate_extended_all (qualid_of_ident id) in
let all = list_uniquize (list_map_filter global_of_extended all) in
let these = List.filter (has_suffix_in_dirs dirs) all in
match these with
| [x] -> constr_of_global x
| [] ->
anomalylabstrm "" (str (locstr^": cannot find "^s^
" in module"^(if List.length dirs > 1 then "s " else " ")) ++
prlist_with_sep pr_comma pr_dirpath dirs)
| l ->
anomalylabstrm ""
(str (locstr^": found more than once object of name "^s^
" in module"^(if List.length dirs > 1 then "s " else " ")) ++
prlist_with_sep pr_comma pr_dirpath dirs)
(* For tactics/commands requiring vernacular libraries *)
let check_required_library d =
let d' = List.map id_of_string d in
let dir = make_dirpath (List.rev d') in
let mp = (fst(Lib.current_prefix())) in
let current_dir = match mp with
| MPfile dp -> (dir=dp)
| _ -> false
in
if not (Library.library_is_loaded dir) then
if not current_dir then
(* Loading silently ...
let m, prefix = list_sep_last d' in
read_library
(dummy_loc,make_qualid (make_dirpath (List.rev prefix)) m)
*)
(* or failing ...*)
error ("Library "^(string_of_dirpath dir)^" has to be required first.")
(************************************************************************)
(* Specific Coq objects *)
let init_reference dir s = gen_reference "Coqlib" ("Init"::dir) s
let init_constant dir s = gen_constant "Coqlib" ("Init"::dir) s
let logic_constant dir s = gen_constant "Coqlib" ("Logic"::dir) s
let arith_dir = ["Coq";"Arith"]
let arith_modules = [arith_dir]
let narith_dir = ["Coq";"NArith"]
let zarith_dir = ["Coq";"ZArith"]
let zarith_base_modules = [narith_dir;zarith_dir]
let init_dir = ["Coq";"Init"]
let init_modules = [
init_dir@["Datatypes"];
init_dir@["Logic"];
init_dir@["Specif"];
init_dir@["Logic_Type"];
init_dir@["Peano"];
init_dir@["Wf"]
]
let coq_id = id_of_string "Coq"
let init_id = id_of_string "Init"
let arith_id = id_of_string "Arith"
let datatypes_id = id_of_string "Datatypes"
let logic_module_name = ["Coq";"Init";"Logic"]
let logic_module = make_dir logic_module_name
let logic_type_module_name = ["Coq";"Init";"Logic_Type"]
let logic_type_module = make_dir logic_type_module_name
let datatypes_module_name = ["Coq";"Init";"Datatypes"]
let datatypes_module = make_dir datatypes_module_name
let arith_module_name = ["Coq";"Arith";"Arith"]
let arith_module = make_dir arith_module_name
let jmeq_module_name = ["Coq";"Logic";"JMeq"]
let jmeq_module = make_dir jmeq_module_name
(* TODO: temporary hack *)
let make_kn dir id = Libnames.encode_mind dir id
let make_con dir id = Libnames.encode_con dir id
(** Identity *)
let id = make_con datatypes_module (id_of_string "id")
let type_of_id = make_con datatypes_module (id_of_string "ID")
let _ = Cases.set_impossible_default_clause (mkConst id,mkConst type_of_id)
(** Natural numbers *)
let nat_kn = make_kn datatypes_module (id_of_string "nat")
let nat_path = Libnames.make_path datatypes_module (id_of_string "nat")
let glob_nat = IndRef (nat_kn,0)
let path_of_O = ((nat_kn,0),1)
let path_of_S = ((nat_kn,0),2)
let glob_O = ConstructRef path_of_O
let glob_S = ConstructRef path_of_S
(** Booleans *)
let bool_kn = make_kn datatypes_module (id_of_string "bool")
let glob_bool = IndRef (bool_kn,0)
let path_of_true = ((bool_kn,0),1)
let path_of_false = ((bool_kn,0),2)
let glob_true = ConstructRef path_of_true
let glob_false = ConstructRef path_of_false
(** Equality *)
let eq_kn = make_kn logic_module (id_of_string "eq")
let glob_eq = IndRef (eq_kn,0)
let identity_kn = make_kn datatypes_module (id_of_string "identity")
let glob_identity = IndRef (identity_kn,0)
let jmeq_kn = make_kn jmeq_module (id_of_string "JMeq")
let glob_jmeq = IndRef (jmeq_kn,0)
type coq_sigma_data = {
proj1 : constr;
proj2 : constr;
elim : constr;
intro : constr;
typ : constr }
type coq_bool_data = {
andb : constr;
andb_prop : constr;
andb_true_intro : constr}
let build_bool_type () =
{ andb = init_constant ["Datatypes"] "andb";
andb_prop = init_constant ["Datatypes"] "andb_prop";
andb_true_intro = init_constant ["Datatypes"] "andb_true_intro" }
let build_sigma_set () = anomaly "Use build_sigma_type"
let build_sigma_type () =
{ proj1 = init_constant ["Specif"] "projT1";
proj2 = init_constant ["Specif"] "projT2";
elim = init_constant ["Specif"] "sigT_rec";
intro = init_constant ["Specif"] "existT";
typ = init_constant ["Specif"] "sigT" }
let build_prod () =
{ proj1 = init_constant ["Datatypes"] "fst";
proj2 = init_constant ["Datatypes"] "snd";
elim = init_constant ["Datatypes"] "prod_rec";
intro = init_constant ["Datatypes"] "pair";
typ = init_constant ["Datatypes"] "prod" }
(* Equalities *)
type coq_eq_data = {
eq : constr;
ind : constr;
refl : constr;
sym : constr;
trans: constr;
congr: constr }
(* Data needed for discriminate and injection *)
type coq_inversion_data = {
inv_eq : constr; (* : forall params, t -> Prop *)
inv_ind : constr; (* : forall params P y, eq params y -> P y *)
inv_congr: constr (* : forall params B (f:t->B) y, eq params y -> f c=f y *)
}
let lazy_init_constant dir id = lazy (init_constant dir id)
let lazy_logic_constant dir id = lazy (logic_constant dir id)
(* Leibniz equality on Type *)
let coq_eq_eq = lazy_init_constant ["Logic"] "eq"
let coq_eq_refl = lazy_init_constant ["Logic"] "eq_refl"
let coq_eq_ind = lazy_init_constant ["Logic"] "eq_ind"
let coq_eq_rec = lazy_init_constant ["Logic"] "eq_rec"
let coq_eq_rect = lazy_init_constant ["Logic"] "eq_rect"
let coq_eq_congr = lazy_init_constant ["Logic"] "f_equal"
let coq_eq_sym = lazy_init_constant ["Logic"] "eq_sym"
let coq_eq_trans = lazy_init_constant ["Logic"] "eq_trans"
let coq_f_equal2 = lazy_init_constant ["Logic"] "f_equal2"
let coq_eq_congr_canonical =
lazy_init_constant ["Logic"] "f_equal_canonical_form"
let build_coq_eq_data () =
let _ = check_required_library logic_module_name in {
eq = Lazy.force coq_eq_eq;
ind = Lazy.force coq_eq_ind;
refl = Lazy.force coq_eq_refl;
sym = Lazy.force coq_eq_sym;
trans = Lazy.force coq_eq_trans;
congr = Lazy.force coq_eq_congr }
let build_coq_eq () = Lazy.force coq_eq_eq
let build_coq_eq_refl () = Lazy.force coq_eq_refl
let build_coq_eq_sym () = Lazy.force coq_eq_sym
let build_coq_f_equal2 () = Lazy.force coq_f_equal2
let build_coq_sym_eq = build_coq_eq_sym (* compatibility *)
let build_coq_inversion_eq_data () =
let _ = check_required_library logic_module_name in {
inv_eq = Lazy.force coq_eq_eq;
inv_ind = Lazy.force coq_eq_ind;
inv_congr = Lazy.force coq_eq_congr_canonical }
(* Heterogenous equality on Type *)
let coq_jmeq_eq = lazy_logic_constant ["JMeq"] "JMeq"
let coq_jmeq_refl = lazy_logic_constant ["JMeq"] "JMeq_refl"
let coq_jmeq_ind = lazy_logic_constant ["JMeq"] "JMeq_ind"
let coq_jmeq_rec = lazy_logic_constant ["JMeq"] "JMeq_rec"
let coq_jmeq_rect = lazy_logic_constant ["JMeq"] "JMeq_rect"
let coq_jmeq_sym = lazy_logic_constant ["JMeq"] "JMeq_sym"
let coq_jmeq_congr = lazy_logic_constant ["JMeq"] "JMeq_congr"
let coq_jmeq_trans = lazy_logic_constant ["JMeq"] "JMeq_trans"
let coq_jmeq_congr_canonical =
lazy_logic_constant ["JMeq"] "JMeq_congr_canonical_form"
let build_coq_jmeq_data () =
let _ = check_required_library jmeq_module_name in {
eq = Lazy.force coq_jmeq_eq;
ind = Lazy.force coq_jmeq_ind;
refl = Lazy.force coq_jmeq_refl;
sym = Lazy.force coq_jmeq_sym;
trans = Lazy.force coq_jmeq_trans;
congr = Lazy.force coq_jmeq_congr }
let join_jmeq_types eq =
mkLambda(Name (id_of_string "A"),Termops.new_Type(),
mkLambda(Name (id_of_string "x"),mkRel 1,
mkApp (eq,[|mkRel 2;mkRel 1;mkRel 2|])))
let build_coq_inversion_jmeq_data () =
let _ = check_required_library logic_module_name in {
inv_eq = join_jmeq_types (Lazy.force coq_jmeq_eq);
inv_ind = Lazy.force coq_jmeq_ind;
inv_congr = Lazy.force coq_jmeq_congr_canonical }
(* Specif *)
let coq_sumbool = lazy_init_constant ["Specif"] "sumbool"
let build_coq_sumbool () = Lazy.force coq_sumbool
(* Equality on Type as a Type *)
let coq_identity_eq = lazy_init_constant ["Datatypes"] "identity"
let coq_identity_refl = lazy_init_constant ["Datatypes"] "refl_identity"
let coq_identity_ind = lazy_init_constant ["Datatypes"] "identity_ind"
let coq_identity_rec = lazy_init_constant ["Datatypes"] "identity_rec"
let coq_identity_rect = lazy_init_constant ["Datatypes"] "identity_rect"
let coq_identity_congr = lazy_init_constant ["Logic_Type"] "identity_congr"
let coq_identity_sym = lazy_init_constant ["Logic_Type"] "identity_sym"
let coq_identity_trans = lazy_init_constant ["Logic_Type"] "identity_trans"
let coq_identity_congr_canonical = lazy_init_constant ["Logic_Type"] "identity_congr_canonical_form"
let build_coq_identity_data () =
let _ = check_required_library datatypes_module_name in {
eq = Lazy.force coq_identity_eq;
ind = Lazy.force coq_identity_ind;
refl = Lazy.force coq_identity_refl;
sym = Lazy.force coq_identity_sym;
trans = Lazy.force coq_identity_trans;
congr = Lazy.force coq_identity_congr }
let build_coq_inversion_identity_data () =
let _ = check_required_library datatypes_module_name in
let _ = check_required_library logic_type_module_name in {
inv_eq = Lazy.force coq_identity_eq;
inv_ind = Lazy.force coq_identity_ind;
inv_congr = Lazy.force coq_identity_congr_canonical }
(* Equality to true *)
let coq_eq_true_eq = lazy_init_constant ["Datatypes"] "eq_true"
let coq_eq_true_ind = lazy_init_constant ["Datatypes"] "eq_true_ind"
let coq_eq_true_congr = lazy_init_constant ["Logic"] "eq_true_congr"
let build_coq_inversion_eq_true_data () =
let _ = check_required_library datatypes_module_name in
let _ = check_required_library logic_module_name in {
inv_eq = Lazy.force coq_eq_true_eq;
inv_ind = Lazy.force coq_eq_true_ind;
inv_congr = Lazy.force coq_eq_true_congr }
(* The False proposition *)
let coq_False = lazy_init_constant ["Logic"] "False"
(* The True proposition and its unique proof *)
let coq_True = lazy_init_constant ["Logic"] "True"
let coq_I = lazy_init_constant ["Logic"] "I"
(* Connectives *)
let coq_not = lazy_init_constant ["Logic"] "not"
let coq_and = lazy_init_constant ["Logic"] "and"
let coq_conj = lazy_init_constant ["Logic"] "conj"
let coq_or = lazy_init_constant ["Logic"] "or"
let coq_ex = lazy_init_constant ["Logic"] "ex"
let coq_iff = lazy_init_constant ["Logic"] "iff"
let coq_iff_left_proj = lazy_init_constant ["Logic"] "proj1"
let coq_iff_right_proj = lazy_init_constant ["Logic"] "proj2"
(* Runtime part *)
let build_coq_True () = Lazy.force coq_True
let build_coq_I () = Lazy.force coq_I
let build_coq_False () = Lazy.force coq_False
let build_coq_not () = Lazy.force coq_not
let build_coq_and () = Lazy.force coq_and
let build_coq_conj () = Lazy.force coq_conj
let build_coq_or () = Lazy.force coq_or
let build_coq_ex () = Lazy.force coq_ex
let build_coq_iff () = Lazy.force coq_iff
let build_coq_iff_left_proj () = Lazy.force coq_iff_left_proj
let build_coq_iff_right_proj () = Lazy.force coq_iff_right_proj
(* The following is less readable but does not depend on parsing *)
let coq_eq_ref = lazy (init_reference ["Logic"] "eq")
let coq_identity_ref = lazy (init_reference ["Datatypes"] "identity")
let coq_jmeq_ref = lazy (gen_reference "Coqlib" ["Logic";"JMeq"] "JMeq")
let coq_eq_true_ref = lazy (gen_reference "Coqlib" ["Init";"Datatypes"] "eq_true")
let coq_existS_ref = lazy (anomaly "use coq_existT_ref")
let coq_existT_ref = lazy (init_reference ["Specif"] "existT")
let coq_not_ref = lazy (init_reference ["Logic"] "not")
let coq_False_ref = lazy (init_reference ["Logic"] "False")
let coq_sumbool_ref = lazy (init_reference ["Specif"] "sumbool")
let coq_sig_ref = lazy (init_reference ["Specif"] "sig")
let coq_or_ref = lazy (init_reference ["Logic"] "or")
let coq_iff_ref = lazy (init_reference ["Logic"] "iff")
|