blob: 0ca830c2a6ab0216e8f84c62c677f9180e782e78 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
(* $Id: ProgInt.v,v 1.1.2.1 2004/07/16 19:30:16 herbelin Exp $ *)
Require Export ZArith.
Require Export ZArith_dec.
Theorem Znotzero : (x:Z){`x<>0`}+{`x=0`}.
Proof.
Intro x. Elim (Z_eq_dec x `0`) ; Auto.
Save.
|