blob: c7a7687d2da54755f8458a2146ca3034601a8bfe (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
(* $Id: ProgBool.v,v 1.1.2.1 2004/07/16 19:30:16 herbelin Exp $ *)
Require ZArith.
Require Export Bool_nat.
Require Export Sumbool.
Definition annot_bool :
(b:bool) { b':bool | if b' then b=true else b=false }.
Proof.
Intro b.
Exists b. Case b; Trivial.
Save.
(* Logical connectives *)
Definition spec_and := [A,B,C,D:Prop][b:bool]if b then A /\ C else B \/ D.
Definition prog_bool_and :
(Q1,Q2:bool->Prop) (sig bool Q1) -> (sig bool Q2)
-> { b:bool | if b then (Q1 true) /\ (Q2 true)
else (Q1 false) \/ (Q2 false) }.
Proof.
Intros Q1 Q2 H1 H2.
Elim H1. Intro b1. Elim H2. Intro b2.
Case b1; Case b2; Intros.
Exists true; Auto.
Exists false; Auto. Exists false; Auto. Exists false; Auto.
Save.
Definition spec_or := [A,B,C,D:Prop][b:bool]if b then A \/ C else B /\ D.
Definition prog_bool_or :
(Q1,Q2:bool->Prop) (sig bool Q1) -> (sig bool Q2)
-> { b:bool | if b then (Q1 true) \/ (Q2 true)
else (Q1 false) /\ (Q2 false) }.
Proof.
Intros Q1 Q2 H1 H2.
Elim H1. Intro b1. Elim H2. Intro b2.
Case b1; Case b2; Intros.
Exists true; Auto. Exists true; Auto. Exists true; Auto.
Exists false; Auto.
Save.
Definition spec_not:= [A,B:Prop][b:bool]if b then B else A.
Definition prog_bool_not :
(Q:bool->Prop) (sig bool Q)
-> { b:bool | if b then (Q false) else (Q true) }.
Proof.
Intros Q H.
Elim H. Intro b.
Case b; Intro.
Exists false; Auto. Exists true; Auto.
Save.
|