blob: 3fdc78c14230ad832aa6669223400d70c770dbfc (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)
(* $Id: Arrays.v,v 1.1.2.1 2004/07/16 19:30:16 herbelin Exp $ *)
(**********************************************)
(* Functional arrays, for use in Correctness. *)
(**********************************************)
(* This is an axiomatization of arrays.
*
* The type (array N T) is the type of arrays ranging from 0 to N-1
* which elements are of type T.
*
* Arrays are created with new, accessed with access and modified with store.
*
* Operations of accessing and storing are not guarded, but axioms are.
* So these arrays can be viewed as arrays where accessing and storing
* out of the bounds has no effect.
*)
Require Export ProgInt.
Set Implicit Arguments.
(* The type of arrays *)
Parameter array : Z -> Set -> Set.
(* Functions to create, access and modify arrays *)
Parameter new : (n:Z)(T:Set) T -> (array n T).
Parameter access : (n:Z)(T:Set) (array n T) -> Z -> T.
Parameter store : (n:Z)(T:Set) (array n T) -> Z -> T -> (array n T).
(* Axioms *)
Axiom new_def : (n:Z)(T:Set)(v0:T)
(i:Z) `0<=i<n` -> (access (new n v0) i) = v0.
Axiom store_def_1 : (n:Z)(T:Set)(t:(array n T))(v:T)
(i:Z) `0<=i<n` ->
(access (store t i v) i) = v.
Axiom store_def_2 : (n:Z)(T:Set)(t:(array n T))(v:T)
(i:Z)(j:Z) `0<=i<n` -> `0<=j<n` ->
`i <> j` ->
(access (store t i v) j) = (access t j).
Hints Resolve new_def store_def_1 store_def_2 : datatypes v62.
(* A tactic to simplify access in arrays *)
Tactic Definition ArrayAccess i j H :=
Elim (Z_eq_dec i j); [
Intro H; Rewrite H; Rewrite store_def_1
| Intro H; Rewrite store_def_2; [ Idtac | Idtac | Idtac | Exact H ] ].
(* Symbolic notation for access *)
Notation "# t [ c ]" := (access t c) (at level 0, t ident)
V8only (at level 0, t at level 0).
|