blob: 76f49dd3bc2edf1b17085875d4aaf9bdc9b26e69 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
|
Require Export Coq.subtac.SubtacTactics.
Set Implicit Arguments.
(** Wrap a proposition inside a subset. *)
Notation " {{ x }} " := (tt : { y : unit | x }).
(** A simpler notation for subsets defined on a cartesian product. *)
Notation "{ ( x , y ) : A | P }" :=
(sig (fun anonymous : A => let (x,y) := anonymous in P))
(x ident, y ident) : type_scope.
(** Generates an obligation to prove False. *)
Notation " ! " := (False_rect _ _).
(** Abbreviation for first projection and hiding of proofs of subset objects. *)
Notation " ` t " := (proj1_sig t) (at level 10) : core_scope.
Notation "( x & ? )" := (@exist _ _ x _) : core_scope.
(** Coerces objects to their support before comparing them. *)
Notation " x '`=' y " := ((x :>) = (y :>)) (at level 70).
(** Quantifying over subsets. *)
Notation "'fun' { x : A | P } => Q" :=
(fun x:{x:A|P} => Q)
(at level 200, x ident, right associativity).
Notation "'forall' { x : A | P } , Q" :=
(forall x:{x:A|P}, Q)
(at level 200, x ident, right associativity).
Require Import Coq.Bool.Sumbool.
(** Construct a dependent disjunction from a boolean. *)
Notation "'dec'" := (sumbool_of_bool) (at level 0).
(** The notations [in_right] and [in_left] construct objects of a dependent disjunction. *)
Notation in_right := (@right _ _ _).
Notation in_left := (@left _ _ _).
(** Default simplification tactic. *)
Ltac subtac_simpl := simpl ; intros ; destruct_conjs ; simpl in * ; try subst ;
try (solve [ red ; intros ; discriminate ]) ; auto with *.
(** Extraction directives *)
Extraction Inline proj1_sig.
Extract Inductive unit => "unit" [ "()" ].
Extract Inductive bool => "bool" [ "true" "false" ].
Extract Inductive sumbool => "bool" [ "true" "false" ].
(* Extract Inductive prod "'a" "'b" => " 'a * 'b " [ "(,)" ]. *)
(* Extract Inductive sigT => "prod" [ "" ]. *)
Require Export ProofIrrelevance.
Require Export Coq.subtac.Heq.
Delimit Scope program_scope with program.
|