blob: 219cd75bac86326fc2cd3275ae9e8014f78a21fb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
|
Set Implicit Arguments.
Notation "'fun' { x : A | P } => Q" :=
(fun x:{x:A|P} => Q)
(at level 200, x ident, right associativity).
Notation "( x & ? )" := (@exist _ _ x _) : core_scope.
Definition ex_pi1 (A : Prop) (P : A -> Prop) (t : ex P) : A.
intros.
induction t.
exact x.
Defined.
Lemma ex_pi2 : forall (A : Prop) (P : A -> Prop) (t : ex P),
P (ex_pi1 t).
intros A P.
dependent inversion t.
simpl.
exact p.
Defined.
Notation "` t" := (proj1_sig t) (at level 100) : core_scope.
Notation "'forall' { x : A | P } , Q" :=
(forall x:{x:A|P}, Q)
(at level 200, x ident, right associativity).
Lemma subset_simpl : forall (A : Set) (P : A -> Prop)
(t : sig P), P (` t).
Proof.
intros.
induction t.
simpl ; auto.
Qed.
Ltac destruct_one_pair :=
match goal with
| [H : (ex _) |- _] => destruct H
| [H : (ex2 _) |- _] => destruct H
| [H : (sig _) |- _] => destruct H
| [H : (_ /\ _) |- _] => destruct H
end.
Ltac destruct_exists := repeat (destruct_one_pair) .
Extraction Inline proj1_sig.
|