blob: b55c54439902691424c66179ab32286ef4e5e65a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
|
Set Implicit Arguments.
Require Import Setoid.
Require Import BinPos.
Require Import Ring_polynom.
Require Import BinList.
Require Import InitialRing.
Declare ML Module "newring".
(* adds a definition id' on the normal form of t and an hypothesis id
stating that t = id' (tries to produces a proof as small as possible) *)
Ltac compute_assertion id id' t :=
let t' := eval vm_compute in t in
pose (id' := t');
assert (id : t = id');
[vm_cast_no_check (refl_equal id')|idtac].
(* [exact_no_check (refl_equal id'<: t = id')|idtac]). *)
Ltac getGoal :=
match goal with
| |- ?G => G
end.
(********************************************************************)
(* Tacticals to build reflexive tactics *)
Ltac OnEquation req :=
match goal with
| |- req ?lhs ?rhs => (fun f => f lhs rhs)
| _ => fail 1 "Goal is not an equation (of expected equality)"
end.
Ltac OnMainSubgoal H ty :=
match ty with
| _ -> ?ty' =>
let subtac := OnMainSubgoal H ty' in
fun tac => lapply H; [clear H; intro H; subtac tac | idtac]
| _ => (fun tac => tac)
end.
Ltac ApplyLemmaThen lemma expr tac :=
let nexpr := fresh "expr_nf" in
let H := fresh "eq_nf" in
let Heq := fresh "thm" in
let nf_spec :=
match type of (lemma expr) with
forall x, ?nf_spec = x -> _ => nf_spec
| _ => fail 1 "ApplyLemmaThen: cannot find norm expression"
end in
(compute_assertion H nexpr nf_spec;
(assert (Heq:=lemma _ _ H) || fail "anomaly: failed to apply lemma");
clear H;
OnMainSubgoal Heq ltac:(type of Heq) ltac:(tac Heq; clear Heq nexpr)).
Ltac ApplyLemmaThenAndCont lemma expr tac CONT_tac cont_arg :=
let npe := fresh "expr_nf" in
let H := fresh "eq_nf" in
let Heq := fresh "thm" in
let npe_spec :=
match type of (lemma expr) with
forall npe, ?npe_spec = npe -> _ => npe_spec
| _ => fail 1 "ApplyLemmaThenAndCont: cannot find norm expression"
end in
(compute_assertion H npe npe_spec;
(assert (Heq:=lemma _ _ H) || fail "anomaly: failed to apply lemma");
clear H;
OnMainSubgoal Heq ltac:(type of Heq)
ltac:(try tac Heq; clear Heq npe;CONT_tac cont_arg)).
(* General scheme of reflexive tactics using of correctness lemma
that involves normalisation of one expression *)
Ltac ReflexiveRewriteTactic FV_tac SYN_tac MAIN_tac LEMMA_tac fv terms :=
(* extend the atom list *)
let fv := list_fold_left FV_tac fv terms in
let RW_tac lemma :=
let fcons term CONT_tac cont_arg :=
let expr := SYN_tac term fv in
(ApplyLemmaThenAndCont lemma expr MAIN_tac CONT_tac cont_arg) in
(* rewrite steps *)
lazy_list_fold_right fcons ltac:(idtac) terms in
LEMMA_tac fv RW_tac.
(********************************************************)
(* Building the atom list of a ring expression *)
Ltac FV Cst CstPow add mul sub opp pow t fv :=
let rec TFV t fv :=
match Cst t with
| NotConstant =>
match t with
| (add ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
| (mul ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
| (sub ?t1 ?t2) => TFV t2 ltac:(TFV t1 fv)
| (opp ?t1) => TFV t1 fv
| (pow ?t1 ?n) =>
match CstPow n with
| InitialRing.NotConstant => AddFvTail t fv
| _ => TFV t1 fv
end
| _ => AddFvTail t fv
end
| _ => fv
end
in TFV t fv.
(* syntaxification of ring expressions *)
Ltac mkPolexpr C Cst CstPow radd rmul rsub ropp rpow t fv :=
let rec mkP t :=
let f :=
match Cst t with
| InitialRing.NotConstant =>
match t with
| (radd ?t1 ?t2) =>
fun _ =>
let e1 := mkP t1 in
let e2 := mkP t2 in constr:(PEadd e1 e2)
| (rmul ?t1 ?t2) =>
fun _ =>
let e1 := mkP t1 in
let e2 := mkP t2 in constr:(PEmul e1 e2)
| (rsub ?t1 ?t2) =>
fun _ =>
let e1 := mkP t1 in
let e2 := mkP t2 in constr:(PEsub e1 e2)
| (ropp ?t1) =>
fun _ =>
let e1 := mkP t1 in constr:(PEopp e1)
| (rpow ?t1 ?n) =>
match CstPow n with
| InitialRing.NotConstant =>
fun _ => let p := Find_at t fv in constr:(PEX C p)
| ?c => fun _ => let e1 := mkP t1 in constr:(PEpow e1 c)
end
| _ =>
fun _ => let p := Find_at t fv in constr:(PEX C p)
end
| ?c => fun _ => constr:(@PEc C c)
end in
f ()
in mkP t.
Ltac ParseRingComponents lemma :=
match type of lemma with
| context
[@PEeval ?R ?rO ?add ?mul ?sub ?opp ?C ?phi ?Cpow ?powphi ?pow _ _] =>
(fun f => f R add mul sub opp pow C)
| _ => fail 1 "ring anomaly: bad correctness lemma (parse)"
end.
(* ring tactics *)
Ltac FV_hypo_tac mkFV req lH :=
let R := match type of req with ?R -> _ => R end in
let FV_hypo_l_tac h :=
match h with @mkhypo (req ?pe _) _ => mkFV pe end in
let FV_hypo_r_tac h :=
match h with @mkhypo (req _ ?pe) _ => mkFV pe end in
let fv := list_fold_right FV_hypo_l_tac (@nil R) lH in
list_fold_right FV_hypo_r_tac fv lH.
Ltac mkHyp_tac C req mkPE lH :=
let mkHyp h res :=
match h with
| @mkhypo (req ?r1 ?r2) _ =>
let pe1 := mkPE r1 in
let pe2 := mkPE r2 in
constr:(cons (pe1,pe2) res)
| _ => fail "hypothesis is not a ring equality"
end in
list_fold_right mkHyp (@nil (PExpr C * PExpr C)) lH.
Ltac proofHyp_tac lH :=
let get_proof h :=
match h with
| @mkhypo _ ?p => p
end in
let rec bh l :=
match l with
| nil => constr:(I)
| cons ?h nil => get_proof h
| cons ?h ?tl =>
let l := get_proof h in
let r := bh tl in
constr:(conj l r)
end in
bh lH.
Definition ring_subst_niter := (10*10*10)%nat.
Ltac Ring Cst_tac CstPow_tac lemma1 req n lH :=
let Main lhs rhs R radd rmul rsub ropp rpow C :=
let mkFV := FV Cst_tac CstPow_tac radd rmul rsub ropp rpow in
let mkPol := mkPolexpr C Cst_tac CstPow_tac radd rmul rsub ropp rpow in
let fv := FV_hypo_tac mkFV req lH in
let fv := mkFV lhs fv in
let fv := mkFV rhs fv in
check_fv fv;
let pe1 := mkPol lhs fv in
let pe2 := mkPol rhs fv in
let lpe := mkHyp_tac C req ltac:(fun t => mkPol t fv) lH in
let vlpe := fresh "hyp_list" in
let vfv := fresh "fv_list" in
pose (vlpe := lpe);
pose (vfv := fv);
(apply (lemma1 n vfv vlpe pe1 pe2)
|| fail "typing error while applying ring");
[ ((let prh := proofHyp_tac lH in exact prh)
|| idtac "can not automatically proof hypothesis : maybe a left member of a hypothesis is not a monomial")
| vm_compute;
(exact (refl_equal true) || fail "not a valid ring equation")] in
ParseRingComponents lemma1 ltac:(OnEquation req Main).
Ltac Ring_norm_gen f Cst_tac CstPow_tac lemma2 req n lH rl :=
let Main R add mul sub opp pow C :=
let mkFV := FV Cst_tac CstPow_tac add mul sub opp pow in
let mkPol := mkPolexpr C Cst_tac CstPow_tac add mul sub opp pow in
let fv := FV_hypo_tac mkFV req lH in
let simpl_ring H := (protect_fv "ring" in H; f H) in
let Coeffs :=
match type of lemma2 with
| context [mk_monpol_list ?cO ?cI ?cadd ?cmul ?csub ?copp ?ceqb _] =>
(fun f => f cO cI cadd cmul csub copp ceqb)
| _ => fail 1 "ring_simplify anomaly: bad correctness lemma"
end in
let lemma_tac fv RW_tac :=
let rr_lemma := fresh "r_rw_lemma" in
let lpe := mkHyp_tac C req ltac:(fun t => mkPol t fv) lH in
let vlpe := fresh "list_hyp" in
let vlmp := fresh "list_hyp_norm" in
let vlmp_eq := fresh "list_hyp_norm_eq" in
let prh := proofHyp_tac lH in
pose (vlpe := lpe);
Coeffs ltac:(fun cO cI cadd cmul csub copp ceqb =>
compute_assertion vlmp_eq vlmp
(mk_monpol_list cO cI cadd cmul csub copp ceqb vlpe);
assert (rr_lemma := lemma2 n vlpe fv prh vlmp vlmp_eq)
|| fail "type error when build the rewriting lemma";
RW_tac rr_lemma;
try clear rr_lemma vlmp_eq vlmp vlpe) in
ReflexiveRewriteTactic mkFV mkPol simpl_ring lemma_tac fv rl in
ParseRingComponents lemma2 Main.
Ltac Ring_gen
req sth ext morph arth cst_tac pow_tac lemma1 lemma2 pre post lH rl :=
pre();Ring cst_tac pow_tac lemma1 req ring_subst_niter lH.
Tactic Notation (at level 0) "ring" :=
let G := getGoal in ring_lookup Ring_gen [] [G].
Tactic Notation (at level 0) "ring" "[" constr_list(lH) "]" :=
let G := getGoal in ring_lookup Ring_gen [lH] [G].
(* Simplification *)
Ltac Ring_simplify_gen f :=
fun req sth ext morph arth cst_tac pow_tac lemma1 lemma2 pre post lH rl =>
let l := fresh "to_rewrite" in
pose (l:= rl);
generalize (refl_equal l);
unfold l at 2;
pre();
match goal with
| [|- l = ?RL -> _ ] =>
let Heq := fresh "Heq" in
intros Heq;clear Heq l;
Ring_norm_gen f cst_tac pow_tac lemma2 req ring_subst_niter lH RL;
post()
| _ => fail 1 "ring_simplify anomaly: bad goal after pre"
end.
Ltac Ring_simplify := Ring_simplify_gen ltac:(fun H => rewrite H).
Ltac Ring_nf Cst_tac lemma2 req rl f :=
let on_rhs H :=
match type of H with
| req _ ?rhs => clear H; f rhs
end in
Ring_norm_gen on_rhs Cst_tac lemma2 req rl.
Tactic Notation (at level 0)
"ring_simplify" "[" constr_list(lH) "]" constr_list(rl) :=
let G := getGoal in ring_lookup Ring_simplify [lH] rl [G].
Tactic Notation (at level 0)
"ring_simplify" constr_list(rl) :=
let G := getGoal in ring_lookup Ring_simplify [] rl [G].
Tactic Notation "ring_simplify" constr_list(rl) "in" hyp(H):=
let G := getGoal in
let t := type of H in
let g := fresh "goal" in
set (g:= G);
generalize H;clear H;
ring_lookup Ring_simplify [] rl [t];
intro H;
unfold g;clear g.
Tactic Notation "ring_simplify" "["constr_list(lH)"]" constr_list(rl) "in" hyp(H):=
let G := getGoal in
let t := type of H in
let g := fresh "goal" in
set (g:= G);
generalize H;clear H;
ring_lookup Ring_simplify [lH] rl [t];
intro H;
unfold g;clear g.
(*
Ltac Ring_simplify_in hyp:= Ring_simplify_gen ltac:(fun H => rewrite H in hyp).
Tactic Notation (at level 0)
"ring_simplify" "[" constr_list(lH) "]" constr_list(rl) :=
match goal with [|- ?G] => ring_lookup Ring_simplify [lH] rl [G] end.
Tactic Notation (at level 0)
"ring_simplify" constr_list(rl) :=
match goal with [|- ?G] => ring_lookup Ring_simplify [] rl [G] end.
Tactic Notation (at level 0)
"ring_simplify" "[" constr_list(lH) "]" constr_list(rl) "in" hyp(h):=
let t := type of h in
ring_lookup
(fun req sth ext morph arth cst_tac pow_tac lemma1 lemma2 pre post lH rl =>
pre();
Ring_norm_gen ltac:(fun EQ => rewrite EQ in h) cst_tac pow_tac lemma2 req ring_subst_niter lH rl;
post())
[lH] rl [t].
(* ring_lookup ltac:(Ring_simplify_in h) [lH] rl [t]. NE MARCHE PAS ??? *)
Ltac Ring_simpl_in hyp := Ring_norm_gen ltac:(fun H => rewrite H in hyp).
Tactic Notation (at level 0)
"ring_simplify" constr_list(rl) "in" constr(h):=
let t := type of h in
ring_lookup
(fun req sth ext morph arth cst_tac pow_tac lemma1 lemma2 pre post lH rl =>
pre();
Ring_simpl_in h cst_tac pow_tac lemma2 req ring_subst_niter lH rl;
post())
[] rl [t].
Ltac rw_in H Heq := rewrite Heq in H.
Ltac simpl_in H :=
let t := type of H in
ring_lookup
(fun req sth ext morph arth cst_tac pow_tac lemma1 lemma2 pre post lH rl =>
pre();
Ring_norm_gen ltac:(fun Heq => rewrite Heq in H) cst_tac pow_tac lemma2 req ring_subst_niter lH rl;
post())
[] [t].
*)
|