1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: Bintree.v 7233 2005-07-15 12:34:56Z corbinea $ *)
Require Export List.
Require Export BinPos.
Unset Boxed Definitions.
Open Scope positive_scope.
Ltac clean := try (simpl; congruence).
Ltac caseq t := generalize (refl_equal t); pattern t at -1; case t.
Functional Scheme Pcompare_ind := Induction for Pcompare.
Lemma Prect : forall P : positive -> Type,
P 1 ->
(forall n : positive, P n -> P (Psucc n)) -> forall p : positive, P p.
intros P H1 Hsucc n; induction n.
rewrite <- plus_iter_xI; apply Hsucc; apply iterate_add; assumption.
rewrite <- plus_iter_xO; apply iterate_add; assumption.
assumption.
Qed.
Lemma Gt_Eq_Gt : forall p q cmp,
(p ?= q) Eq = Gt -> (p ?= q) cmp = Gt.
apply (Pcompare_ind (fun p q cmp => (p ?= q) Eq = Gt -> (p ?= q) cmp = Gt));
simpl;auto;congruence.
Qed.
Lemma Gt_Lt_Gt : forall p q cmp,
(p ?= q) Lt = Gt -> (p ?= q) cmp = Gt.
apply (Pcompare_ind (fun p q cmp => (p ?= q) Lt = Gt -> (p ?= q) cmp = Gt));
simpl;auto;congruence.
Qed.
Lemma Gt_Psucc_Eq: forall p q,
(p ?= Psucc q) Gt = Gt -> (p ?= q) Eq = Gt.
intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
intro;apply Gt_Eq_Gt;auto.
apply Gt_Lt_Gt.
Qed.
Lemma Eq_Psucc_Gt: forall p q,
(p ?= Psucc q) Eq = Eq -> (p ?= q) Eq = Gt.
intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
intro H;elim (Pcompare_not_Eq p (Psucc q));tauto.
intro H;apply Gt_Eq_Gt;auto.
intro H;rewrite Pcompare_Eq_eq with p q;auto.
generalize q;clear q IHq p H;induction q;simpl;auto.
intro H;elim (Pcompare_not_Eq p q);tauto.
Qed.
Lemma Gt_Psucc_Gt : forall n p cmp cmp0,
(n?=p) cmp = Gt -> (Psucc n?=p) cmp0 = Gt.
induction n;intros [ | p | p];simpl;try congruence.
intros; apply IHn with cmp;trivial.
intros; apply IHn with Gt;trivial.
intros;apply Gt_Lt_Gt;trivial.
intros [ | | ] _ H.
apply Gt_Eq_Gt;trivial.
apply Gt_Lt_Gt;trivial.
trivial.
Qed.
Lemma Gt_Psucc: forall p q,
(p ?= Psucc q) Eq = Gt -> (p ?= q) Eq = Gt.
intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
apply Gt_Psucc_Eq.
intro;apply Gt_Eq_Gt;apply IHq;auto.
apply Gt_Eq_Gt.
apply Gt_Lt_Gt.
Qed.
Lemma Psucc_Gt : forall p,
(Psucc p ?= p) Eq = Gt.
induction p;simpl.
apply Gt_Eq_Gt;auto.
generalize p;clear p IHp.
induction p;simpl;auto.
reflexivity.
Qed.
Fixpoint pos_eq (m n:positive) {struct m} :bool :=
match m, n with
xI mm, xI nn => pos_eq mm nn
| xO mm, xO nn => pos_eq mm nn
| xH, xH => true
| _, _ => false
end.
Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
induction m;simpl;intro n;destruct n;congruence ||
(intro e;apply f_equal with positive;auto).
Defined.
Theorem refl_pos_eq : forall m, pos_eq m m = true.
induction m;simpl;auto.
Qed.
Definition pos_eq_dec (m n:positive) :{m=n}+{m<>n} .
fix 1;intros [mm|mm|] [nn|nn|];try (right;congruence).
case (pos_eq_dec mm nn).
intro e;left;apply (f_equal xI e).
intro ne;right;congruence.
case (pos_eq_dec mm nn).
intro e;left;apply (f_equal xO e).
intro ne;right;congruence.
left;reflexivity.
Defined.
Theorem pos_eq_dec_refl : forall m, pos_eq_dec m m = left (m<>m) (refl_equal m) .
fix 1;intros [mm|mm|].
simpl; rewrite pos_eq_dec_refl; reflexivity.
simpl; rewrite pos_eq_dec_refl; reflexivity.
reflexivity.
Qed.
Theorem pos_eq_dec_ex : forall m n,
pos_eq m n =true -> exists h:m=n,
pos_eq_dec m n = left (m<>n) h.
fix 1;intros [mm|mm|] [nn|nn|];try (simpl;congruence).
simpl;intro e.
elim (pos_eq_dec_ex _ _ e).
intros x ex; rewrite ex.
exists (f_equal xI x).
reflexivity.
simpl;intro e.
elim (pos_eq_dec_ex _ _ e).
intros x ex; rewrite ex.
exists (f_equal xO x).
reflexivity.
simpl.
exists (refl_equal xH).
reflexivity.
Qed.
Fixpoint nat_eq (m n:nat) {struct m}: bool:=
match m, n with
O,O => true
| S mm,S nn => nat_eq mm nn
| _,_ => false
end.
Theorem nat_eq_refl : forall m n, nat_eq m n = true -> m = n.
induction m;simpl;intro n;destruct n;congruence ||
(intro e;apply f_equal with nat;auto).
Defined.
Theorem refl_nat_eq : forall n, nat_eq n n = true.
induction n;simpl;trivial.
Defined.
Fixpoint Lget (A:Set) (n:nat) (l:list A) {struct l}:option A :=
match l with nil => None
| x::q =>
match n with O => Some x
| S m => Lget A m q
end end .
Implicit Arguments Lget [A].
Lemma map_app : forall (A B:Set) (f:A -> B) l m,
List.map f (l ++ m) = List.map f l ++ List.map f m.
induction l.
reflexivity.
simpl.
intro m ; apply f_equal with (list B);apply IHl.
Qed.
Lemma length_map : forall (A B:Set) (f:A -> B) l,
length (List.map f l) = length l.
induction l.
reflexivity.
simpl; apply f_equal with nat;apply IHl.
Qed.
Lemma Lget_map : forall (A B:Set) (f:A -> B) i l,
Lget i (List.map f l) =
match Lget i l with Some a =>
Some (f a) | None => None end.
induction i;intros [ | x l ] ;trivial.
simpl;auto.
Qed.
Lemma Lget_app : forall (A:Set) (a:A) l i,
Lget i (l ++ a :: nil) = if nat_eq i (length l) then Some a else Lget i l.
induction l;simpl Lget;simpl length.
intros [ | i];simpl;reflexivity.
intros [ | i];simpl.
reflexivity.
auto.
Qed.
Lemma Lget_app_Some : forall (A:Set) l delta i (a: A),
Lget i l = Some a ->
Lget i (l ++ delta) = Some a.
induction l;destruct i;simpl;try congruence;auto.
Qed.
Section Store.
Variable A:Type.
Inductive Poption : Type:=
PSome : A -> Poption
| PNone : Poption.
Inductive Tree : Type :=
Tempty : Tree
| Branch0 : Tree -> Tree -> Tree
| Branch1 : A -> Tree -> Tree -> Tree.
Fixpoint Tget (p:positive) (T:Tree) {struct p} : Poption :=
match T with
Tempty => PNone
| Branch0 T1 T2 =>
match p with
xI pp => Tget pp T2
| xO pp => Tget pp T1
| xH => PNone
end
| Branch1 a T1 T2 =>
match p with
xI pp => Tget pp T2
| xO pp => Tget pp T1
| xH => PSome a
end
end.
Fixpoint Tadd (p:positive) (a:A) (T:Tree) {struct p}: Tree :=
match T with
| Tempty =>
match p with
| xI pp => Branch0 Tempty (Tadd pp a Tempty)
| xO pp => Branch0 (Tadd pp a Tempty) Tempty
| xH => Branch1 a Tempty Tempty
end
| Branch0 T1 T2 =>
match p with
| xI pp => Branch0 T1 (Tadd pp a T2)
| xO pp => Branch0 (Tadd pp a T1) T2
| xH => Branch1 a T1 T2
end
| Branch1 b T1 T2 =>
match p with
| xI pp => Branch1 b T1 (Tadd pp a T2)
| xO pp => Branch1 b (Tadd pp a T1) T2
| xH => Branch1 a T1 T2
end
end.
Definition mkBranch0 (T1 T2:Tree) :=
match T1,T2 with
Tempty ,Tempty => Tempty
| _,_ => Branch0 T1 T2
end.
Fixpoint Tremove (p:positive) (T:Tree) {struct p}: Tree :=
match T with
| Tempty => Tempty
| Branch0 T1 T2 =>
match p with
| xI pp => mkBranch0 T1 (Tremove pp T2)
| xO pp => mkBranch0 (Tremove pp T1) T2
| xH => T
end
| Branch1 b T1 T2 =>
match p with
| xI pp => Branch1 b T1 (Tremove pp T2)
| xO pp => Branch1 b (Tremove pp T1) T2
| xH => mkBranch0 T1 T2
end
end.
Theorem Tget_Tempty: forall (p : positive), Tget p (Tempty) = PNone.
destruct p;reflexivity.
Qed.
Theorem Tget_Tadd: forall i j a T,
Tget i (Tadd j a T) =
match (i ?= j) Eq with
Eq => PSome a
| Lt => Tget i T
| Gt => Tget i T
end.
intros i j.
caseq ((i ?= j) Eq).
intro H;rewrite (Pcompare_Eq_eq _ _ H);intros a;clear i H.
induction j;destruct T;simpl;try (apply IHj);congruence.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
Qed.
Record Store : Type :=
mkStore {index:positive;contents:Tree}.
Definition empty := mkStore xH Tempty.
Definition push a S :=
mkStore (Psucc (index S)) (Tadd (index S) a (contents S)).
Definition get i S := Tget i (contents S).
Lemma get_empty : forall i, get i empty = PNone.
intro i; case i; unfold empty,get; simpl;reflexivity.
Qed.
Inductive Full : Store -> Type:=
F_empty : Full empty
| F_push : forall a S, Full S -> Full (push a S).
Theorem get_Full_Gt : forall S, Full S ->
forall i, (i ?= index S) Eq = Gt -> get i S = PNone.
intros S W;induction W.
unfold empty,index,get,contents;intros;apply Tget_Tempty.
unfold index,get,push;simpl contents.
intros i e;rewrite Tget_Tadd.
rewrite (Gt_Psucc _ _ e).
unfold get in IHW.
apply IHW;apply Gt_Psucc;assumption.
Qed.
Theorem get_Full_Eq : forall S, Full S -> get (index S) S = PNone.
intros [index0 contents0] F.
case F.
unfold empty,index,get,contents;intros;apply Tget_Tempty.
unfold index,get,push;simpl contents.
intros a S.
rewrite Tget_Tadd.
rewrite Psucc_Gt.
intro W.
change (get (Psucc (index S)) S =PNone).
apply get_Full_Gt; auto.
apply Psucc_Gt.
Qed.
Theorem get_push_Full :
forall i a S, Full S ->
get i (push a S) =
match (i ?= index S) Eq with
Eq => PSome a
| Lt => get i S
| Gt => PNone
end.
intros i a S F.
caseq ((i ?= index S) Eq).
intro e;rewrite (Pcompare_Eq_eq _ _ e).
destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
rewrite Pcompare_refl;reflexivity.
intros;destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
simpl index in H;rewrite H;reflexivity.
intro H;generalize H;clear H.
unfold get,push;simpl index;simpl contents.
rewrite Tget_Tadd;intro e;rewrite e.
change (get i S=PNone).
apply get_Full_Gt;auto.
Qed.
Lemma Full_push_compat : forall i a S, Full S ->
forall x, get i S = PSome x ->
get i (push a S) = PSome x.
intros i a S F x H.
caseq ((i ?= index S) Eq);intro test.
rewrite (Pcompare_Eq_eq _ _ test) in H.
rewrite (get_Full_Eq _ F) in H;congruence.
rewrite <- H.
rewrite (get_push_Full i a).
rewrite test;reflexivity.
assumption.
rewrite (get_Full_Gt _ F) in H;congruence.
Qed.
Lemma Full_index_one_empty : forall S, Full S -> index S = 1 -> S=empty.
intros [ind cont] F one; inversion F.
reflexivity.
simpl index in one;assert (h:=Psucc_not_one (index S)).
congruence.
Qed.
Lemma push_not_empty: forall a S, (push a S) <> empty.
intros a [ind cont];unfold push,empty.
simpl;intro H;injection H; intros _ ; apply Psucc_not_one.
Qed.
Fixpoint In (x:A) (S:Store) (F:Full S) {struct F}: Prop :=
match F with
F_empty => False
| F_push a SS FF => x=a \/ In x SS FF
end.
Lemma get_In : forall (x:A) (S:Store) (F:Full S) i ,
get i S = PSome x -> In x S F.
induction F.
intro i;rewrite get_empty; congruence.
intro i;rewrite get_push_Full;trivial.
caseq ((i ?= index S) Eq);simpl.
left;congruence.
right;eauto.
congruence.
Qed.
End Store.
Implicit Arguments PNone [A].
Implicit Arguments PSome [A].
Implicit Arguments Tempty [A].
Implicit Arguments Branch0 [A].
Implicit Arguments Branch1 [A].
Implicit Arguments Tget [A].
Implicit Arguments Tadd [A].
Implicit Arguments Tget_Tempty [A].
Implicit Arguments Tget_Tadd [A].
Implicit Arguments mkStore [A].
Implicit Arguments index [A].
Implicit Arguments contents [A].
Implicit Arguments empty [A].
Implicit Arguments get [A].
Implicit Arguments push [A].
Implicit Arguments get_empty [A].
Implicit Arguments get_push_Full [A].
Implicit Arguments Full [A].
Implicit Arguments F_empty [A].
Implicit Arguments F_push [A].
Implicit Arguments In [A].
Section Map.
Variables A B:Set.
Variable f: A -> B.
Fixpoint Tmap (T: Tree A) : Tree B :=
match T with
Tempty => Tempty
| Branch0 t1 t2 => Branch0 (Tmap t1) (Tmap t2)
| Branch1 a t1 t2 => Branch1 (f a) (Tmap t1) (Tmap t2)
end.
Lemma Tget_Tmap: forall T i,
Tget i (Tmap T)= match Tget i T with PNone => PNone
| PSome a => PSome (f a) end.
induction T;intro i;case i;simpl;auto.
Defined.
Lemma Tmap_Tadd: forall i a T,
Tmap (Tadd i a T) = Tadd i (f a) (Tmap T).
induction i;intros a T;case T;simpl;intros;try (rewrite IHi);simpl;reflexivity.
Defined.
Definition map (S:Store A) : Store B :=
mkStore (index S) (Tmap (contents S)).
Lemma get_map: forall i S,
get i (map S)= match get i S with PNone => PNone
| PSome a => PSome (f a) end.
destruct S;unfold get,map,contents,index;apply Tget_Tmap.
Defined.
Lemma map_push: forall a S,
map (push a S) = push (f a) (map S).
intros a S.
case S.
unfold push,map,contents,index.
intros;rewrite Tmap_Tadd;reflexivity.
Defined.
Theorem Full_map : forall S, Full S -> Full (map S).
intros S F.
induction F.
exact F_empty.
rewrite map_push;constructor 2;assumption.
Defined.
End Map.
Implicit Arguments Tmap [A B].
Implicit Arguments map [A B].
Implicit Arguments Full_map [A B f].
Notation "hyps \ A" := (push A hyps) (at level 72,left associativity).
|