1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
(*************************************************************************
PROJET RNRT Calife - 2001
Author: Pierre Crégut - France Télécom R&D
Licence : LGPL version 2.1
*************************************************************************)
let module_refl_name = "ReflOmegaCore"
let module_refl_path = ["Coq"; "romega"; module_refl_name]
type result =
Kvar of string
| Kapp of string * Term.constr list
| Kimp of Term.constr * Term.constr
| Kufo;;
let destructurate t =
let c, args = Term.decompose_app t in
match Term.kind_of_term c, args with
| Term.Const sp, args ->
Kapp (Names.string_of_id
(Nametab.id_of_global (Libnames.ConstRef sp)),
args)
| Term.Construct csp , args ->
Kapp (Names.string_of_id
(Nametab.id_of_global (Libnames.ConstructRef csp)),
args)
| Term.Ind isp, args ->
Kapp (Names.string_of_id
(Nametab.id_of_global (Libnames.IndRef isp)),
args)
| Term.Var id,[] -> Kvar(Names.string_of_id id)
| Term.Prod (Names.Anonymous,typ,body), [] -> Kimp(typ,body)
| Term.Prod (Names.Name _,_,_),[] ->
Util.error "Omega: Not a quantifier-free goal"
| _ -> Kufo
exception Destruct
let dest_const_apply t =
let f,args = Term.decompose_app t in
let ref =
match Term.kind_of_term f with
| Term.Const sp -> Libnames.ConstRef sp
| Term.Construct csp -> Libnames.ConstructRef csp
| Term.Ind isp -> Libnames.IndRef isp
| _ -> raise Destruct
in Nametab.id_of_global ref, args
let recognize_number t =
let rec loop t =
let f,l = dest_const_apply t in
match Names.string_of_id f,l with
"xI",[t] -> Bigint.add Bigint.one (Bigint.mult Bigint.two (loop t))
| "xO",[t] -> Bigint.mult Bigint.two (loop t)
| "xH",[] -> Bigint.one
| _ -> failwith "not a number" in
let f,l = dest_const_apply t in
match Names.string_of_id f,l with
"Zpos",[t] -> loop t
| "Zneg",[t] -> Bigint.neg (loop t)
| "Z0",[] -> Bigint.zero
| _ -> failwith "not a number";;
let logic_dir = ["Coq";"Logic";"Decidable"]
let coq_modules =
Coqlib.init_modules @ [logic_dir] @ Coqlib.arith_modules @ Coqlib.zarith_base_modules
@ [["Coq"; "omega"; "OmegaLemmas"]]
@ [["Coq"; "Lists"; "List"]]
@ [module_refl_path]
let constant = Coqlib.gen_constant_in_modules "Omega" coq_modules
let coq_xH = lazy (constant "xH")
let coq_xO = lazy (constant "xO")
let coq_xI = lazy (constant "xI")
let coq_Z0 = lazy (constant "Z0")
let coq_Zpos = lazy (constant "Zpos")
let coq_Zneg = lazy (constant "Zneg")
let coq_Z = lazy (constant "Z")
let coq_comparison = lazy (constant "comparison")
let coq_Gt = lazy (constant "Gt")
let coq_Lt = lazy (constant "Lt")
let coq_Eq = lazy (constant "Eq")
let coq_Zplus = lazy (constant "Zplus")
let coq_Zmult = lazy (constant "Zmult")
let coq_Zopp = lazy (constant "Zopp")
let coq_Zminus = lazy (constant "Zminus")
let coq_Zsucc = lazy (constant "Zsucc")
let coq_Zgt = lazy (constant "Zgt")
let coq_Zle = lazy (constant "Zle")
let coq_Z_of_nat = lazy (constant "Z_of_nat")
(* Peano *)
let coq_le = lazy(constant "le")
let coq_gt = lazy(constant "gt")
(* Integers *)
let coq_nat = lazy(constant "nat")
let coq_S = lazy(constant "S")
let coq_O = lazy(constant "O")
let coq_minus = lazy(constant "minus")
(* Logic *)
let coq_eq = lazy(constant "eq")
let coq_refl_equal = lazy(constant "refl_equal")
let coq_and = lazy(constant "and")
let coq_not = lazy(constant "not")
let coq_or = lazy(constant "or")
let coq_True = lazy(constant "True")
let coq_False = lazy(constant "False")
let coq_ex = lazy(constant "ex")
let coq_I = lazy(constant "I")
(* Lists *)
let coq_cons = lazy (constant "cons")
let coq_nil = lazy (constant "nil")
let coq_pcons = lazy (constant "Pcons")
let coq_pnil = lazy (constant "Pnil")
let coq_h_step = lazy (constant "h_step")
let coq_pair_step = lazy (constant "pair_step")
let coq_p_left = lazy (constant "P_LEFT")
let coq_p_right = lazy (constant "P_RIGHT")
let coq_p_invert = lazy (constant "P_INVERT")
let coq_p_step = lazy (constant "P_STEP")
let coq_p_nop = lazy (constant "P_NOP")
let coq_t_int = lazy (constant "Tint")
let coq_t_plus = lazy (constant "Tplus")
let coq_t_mult = lazy (constant "Tmult")
let coq_t_opp = lazy (constant "Topp")
let coq_t_minus = lazy (constant "Tminus")
let coq_t_var = lazy (constant "Tvar")
let coq_p_eq = lazy (constant "EqTerm")
let coq_p_leq = lazy (constant "LeqTerm")
let coq_p_geq = lazy (constant "GeqTerm")
let coq_p_lt = lazy (constant "LtTerm")
let coq_p_gt = lazy (constant "GtTerm")
let coq_p_neq = lazy (constant "NeqTerm")
let coq_p_true = lazy (constant "TrueTerm")
let coq_p_false = lazy (constant "FalseTerm")
let coq_p_not = lazy (constant "Tnot")
let coq_p_or = lazy (constant "Tor")
let coq_p_and = lazy (constant "Tand")
let coq_p_imp = lazy (constant "Timp")
let coq_p_prop = lazy (constant "Tprop")
let coq_proposition = lazy (constant "proposition")
let coq_interp_sequent = lazy (constant "interp_goal_concl")
let coq_normalize_sequent = lazy (constant "normalize_goal")
let coq_execute_sequent = lazy (constant "execute_goal")
let coq_do_concl_to_hyp = lazy (constant "do_concl_to_hyp")
let coq_sequent_to_hyps = lazy (constant "goal_to_hyps")
let coq_normalize_hyps_goal = lazy (constant "normalize_hyps_goal")
(* Constructors for shuffle tactic *)
let coq_t_fusion = lazy (constant "t_fusion")
let coq_f_equal = lazy (constant "F_equal")
let coq_f_cancel = lazy (constant "F_cancel")
let coq_f_left = lazy (constant "F_left")
let coq_f_right = lazy (constant "F_right")
(* Constructors for reordering tactics *)
let coq_step = lazy (constant "step")
let coq_c_do_both = lazy (constant "C_DO_BOTH")
let coq_c_do_left = lazy (constant "C_LEFT")
let coq_c_do_right = lazy (constant "C_RIGHT")
let coq_c_do_seq = lazy (constant "C_SEQ")
let coq_c_nop = lazy (constant "C_NOP")
let coq_c_opp_plus = lazy (constant "C_OPP_PLUS")
let coq_c_opp_opp = lazy (constant "C_OPP_OPP")
let coq_c_opp_mult_r = lazy (constant "C_OPP_MULT_R")
let coq_c_opp_one = lazy (constant "C_OPP_ONE")
let coq_c_reduce = lazy (constant "C_REDUCE")
let coq_c_mult_plus_distr = lazy (constant "C_MULT_PLUS_DISTR")
let coq_c_opp_left = lazy (constant "C_MULT_OPP_LEFT")
let coq_c_mult_assoc_r = lazy (constant "C_MULT_ASSOC_R")
let coq_c_plus_assoc_r = lazy (constant "C_PLUS_ASSOC_R")
let coq_c_plus_assoc_l = lazy (constant "C_PLUS_ASSOC_L")
let coq_c_plus_permute = lazy (constant "C_PLUS_PERMUTE")
let coq_c_plus_comm = lazy (constant "C_PLUS_COMM")
let coq_c_red0 = lazy (constant "C_RED0")
let coq_c_red1 = lazy (constant "C_RED1")
let coq_c_red2 = lazy (constant "C_RED2")
let coq_c_red3 = lazy (constant "C_RED3")
let coq_c_red4 = lazy (constant "C_RED4")
let coq_c_red5 = lazy (constant "C_RED5")
let coq_c_red6 = lazy (constant "C_RED6")
let coq_c_mult_opp_left = lazy (constant "C_MULT_OPP_LEFT")
let coq_c_mult_assoc_reduced =
lazy (constant "C_MULT_ASSOC_REDUCED")
let coq_c_minus = lazy (constant "C_MINUS")
let coq_c_mult_comm = lazy (constant "C_MULT_COMM")
let coq_s_constant_not_nul = lazy (constant "O_CONSTANT_NOT_NUL")
let coq_s_constant_neg = lazy (constant "O_CONSTANT_NEG")
let coq_s_div_approx = lazy (constant "O_DIV_APPROX")
let coq_s_not_exact_divide = lazy (constant "O_NOT_EXACT_DIVIDE")
let coq_s_exact_divide = lazy (constant "O_EXACT_DIVIDE")
let coq_s_sum = lazy (constant "O_SUM")
let coq_s_state = lazy (constant "O_STATE")
let coq_s_contradiction = lazy (constant "O_CONTRADICTION")
let coq_s_merge_eq = lazy (constant "O_MERGE_EQ")
let coq_s_split_ineq =lazy (constant "O_SPLIT_INEQ")
let coq_s_constant_nul =lazy (constant "O_CONSTANT_NUL")
let coq_s_negate_contradict =lazy (constant "O_NEGATE_CONTRADICT")
let coq_s_negate_contradict_inv =lazy (constant "O_NEGATE_CONTRADICT_INV")
(* construction for the [extract_hyp] tactic *)
let coq_direction = lazy (constant "direction")
let coq_d_left = lazy (constant "D_left")
let coq_d_right = lazy (constant "D_right")
let coq_d_mono = lazy (constant "D_mono")
let coq_e_split = lazy (constant "E_SPLIT")
let coq_e_extract = lazy (constant "E_EXTRACT")
let coq_e_solve = lazy (constant "E_SOLVE")
let coq_decompose_solve_valid =
lazy (constant "decompose_solve_valid")
let coq_do_reduce_lhyps = lazy (constant "do_reduce_lhyps")
let coq_do_omega = lazy (constant "do_omega")
(* \subsection{Construction d'expressions} *)
let mk_var v = Term.mkVar (Names.id_of_string v)
let mk_plus t1 t2 = Term.mkApp (Lazy.force coq_Zplus,[| t1; t2 |])
let mk_times t1 t2 = Term.mkApp (Lazy.force coq_Zmult, [| t1; t2 |])
let mk_minus t1 t2 = Term.mkApp (Lazy.force coq_Zminus, [| t1;t2 |])
let mk_eq t1 t2 = Term.mkApp (Lazy.force coq_eq, [| Lazy.force coq_Z; t1; t2 |])
let mk_le t1 t2 = Term.mkApp (Lazy.force coq_Zle, [|t1; t2 |])
let mk_gt t1 t2 = Term.mkApp (Lazy.force coq_Zgt, [|t1; t2 |])
let mk_inv t = Term.mkApp (Lazy.force coq_Zopp, [|t |])
let mk_and t1 t2 = Term.mkApp (Lazy.force coq_and, [|t1; t2 |])
let mk_or t1 t2 = Term.mkApp (Lazy.force coq_or, [|t1; t2 |])
let mk_not t = Term.mkApp (Lazy.force coq_not, [|t |])
let mk_eq_rel t1 t2 = Term.mkApp (Lazy.force coq_eq, [|
Lazy.force coq_comparison; t1; t2 |])
let mk_inj t = Term.mkApp (Lazy.force coq_Z_of_nat, [|t |])
let do_left t =
if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
else Term.mkApp (Lazy.force coq_c_do_left, [|t |] )
let do_right t =
if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
else Term.mkApp (Lazy.force coq_c_do_right, [|t |])
let do_both t1 t2 =
if t1 = Lazy.force coq_c_nop then do_right t2
else if t2 = Lazy.force coq_c_nop then do_left t1
else Term.mkApp (Lazy.force coq_c_do_both , [|t1; t2 |])
let do_seq t1 t2 =
if t1 = Lazy.force coq_c_nop then t2
else if t2 = Lazy.force coq_c_nop then t1
else Term.mkApp (Lazy.force coq_c_do_seq, [|t1; t2 |])
let rec do_list = function
| [] -> Lazy.force coq_c_nop
| [x] -> x
| (x::l) -> do_seq x (do_list l)
let mk_integer n =
let rec loop n =
if n=Bigint.one then Lazy.force coq_xH else
let (q,r) = Bigint.euclid n Bigint.two in
Term.mkApp
((if r = Bigint.zero then Lazy.force coq_xO else Lazy.force coq_xI),
[| loop q |]) in
if n = Bigint.zero then Lazy.force coq_Z0
else
if Bigint.is_strictly_pos n then
Term.mkApp (Lazy.force coq_Zpos, [| loop n |])
else
Term.mkApp (Lazy.force coq_Zneg, [| loop (Bigint.neg n) |])
let mk_Z = mk_integer
let rec mk_nat = function
| 0 -> Lazy.force coq_O
| n -> Term.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |])
let mk_list typ l =
let rec loop = function
| [] ->
Term.mkApp (Lazy.force coq_nil, [|typ|])
| (step :: l) ->
Term.mkApp (Lazy.force coq_cons, [|typ; step; loop l |]) in
loop l
let mk_plist l =
let rec loop = function
| [] ->
(Lazy.force coq_pnil)
| (step :: l) ->
Term.mkApp (Lazy.force coq_pcons, [| step; loop l |]) in
loop l
let mk_shuffle_list l = mk_list (Lazy.force coq_t_fusion) l
|