summaryrefslogtreecommitdiff
path: root/contrib/micromega/csdpcert.ml
blob: e451a38fd8a5c9c7b1ce430c21b2be59e2986390 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-2008                             *)
(*                                                                      *)
(************************************************************************)

open Big_int
open Num
open Sos

module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml

let debug = false

module M =
struct
 open Mc

 let rec expr_to_term = function
  |  PEc z ->  Const  (C2Ml.q_to_num z)
  |  PEX v ->  Var ("x"^(string_of_int (C2Ml.index v)))
  |  PEmul(p1,p2) -> 
      let p1 = expr_to_term p1 in
      let p2 = expr_to_term p2 in
      let res = Mul(p1,p2) in 	   res

  | PEadd(p1,p2) -> Add(expr_to_term p1, expr_to_term p2)
  | PEsub(p1,p2) -> Sub(expr_to_term p1, expr_to_term p2)
  | PEpow(p,n)   -> Pow(expr_to_term p , C2Ml.n n)
  |  PEopp p ->  Opp (expr_to_term p)

      


(* let term_to_expr e =
  let e' = term_to_expr e in
   if debug 
   then Printf.printf "term_to_expr : %s - %s\n"  
    (string_of_poly (poly_of_term  e)) 
    (string_of_poly (poly_of_term (expr_to_term e')));
   e' *)

end 
open M      

open List
open Mutils 




let rec canonical_sum_to_string = function s -> failwith "not implemented"

let print_canonical_sum m = Format.print_string (canonical_sum_to_string m)

let print_list_term l = 
 print_string "print_list_term\n";
 List.iter (fun (Mc.Pair(e,k)) -> Printf.printf "q: %s %s ;" 
  (string_of_poly (poly_of_term (expr_to_term e))) 
  (match k with 
    Mc.Equal -> "= " 
   | Mc.Strict -> "> " 
   | Mc.NonStrict -> ">= " 
   | _ -> failwith "not_implemented")) l ;
 print_string "\n"


let partition_expr l = 
 let rec f i = function
  | [] -> ([],[],[])
  | Mc.Pair(e,k)::l -> 
     let (eq,ge,neq) = f (i+1) l in
      match k with 
       | Mc.Equal -> ((e,i)::eq,ge,neq)
       | Mc.NonStrict -> (eq,(e,Axiom_le i)::ge,neq)
       | Mc.Strict    -> (* e > 0 == e >= 0 /\ e <> 0 *) 
	  (eq, (e,Axiom_lt i)::ge,(e,Axiom_lt i)::neq)
       | Mc.NonEqual -> (eq,ge,(e,Axiom_eq i)::neq) 
	  (* Not quite sure -- Coq interface has changed *)
 in f 0 l


let rec sets_of_list l =
 match l with
  | [] -> [[]]
  | e::l -> let s = sets_of_list l in
	     s@(List.map (fun s0 -> e::s0) s) 

(* The exploration is probably not complete - for simple cases, it works... *)
let real_nonlinear_prover d l =
 try 
  let (eq,ge,neq) = partition_expr l in

  let rec elim_const  = function
    [] ->  []
   | (x,y)::l -> let p = poly_of_term (expr_to_term x) in
		  if poly_isconst p 
		  then elim_const l 
		  else (p,y)::(elim_const l) in

  let eq = elim_const eq in
  let peq = List.map  fst eq in
   
  let pge = List.map 
   (fun (e,psatz) -> poly_of_term (expr_to_term e),psatz) ge in
   
  let monoids = List.map (fun m ->  (List.fold_right (fun (p,kd) y -> 
   let p = poly_of_term (expr_to_term p) in
    match kd with
     | Axiom_lt i -> poly_mul p y
     | Axiom_eq i -> poly_mul (poly_pow p 2) y
     |   _        -> failwith "monoids") m (poly_const (Int 1)) , map  snd m))
   (sets_of_list neq) in

  let (cert_ideal, cert_cone,monoid) = deepen_until d (fun d -> 
   list_try_find (fun m -> let (ci,cc) = 
    real_positivnullstellensatz_general false d peq pge (poly_neg (fst m) ) in
		      (ci,cc,snd m)) monoids) 0 in
   
  let proofs_ideal = map2 (fun q i -> Eqmul(term_of_poly q,Axiom_eq i))  
   cert_ideal (List.map snd eq) in

  let proofs_cone = map term_of_sos cert_cone in
   
  let proof_ne =  
   let (neq , lt) = List.partition 
    (function  Axiom_eq _ -> true | _ -> false ) monoid in
   let sq = match 
     (List.map (function Axiom_eq i -> i | _ -> failwith "error") neq) 
    with
    | []  -> Rational_lt (Int 1)
    | l   -> Monoid l in
    List.fold_right (fun x y -> Product(x,y)) lt sq in

  let proof = list_fold_right_elements 
   (fun s t -> Sum(s,t)) (proof_ne :: proofs_ideal @ proofs_cone) in
   Some proof
 with 
  | Sos.TooDeep -> None


(* This is somewhat buggy, over Z, strict inequality vanish... *)
let pure_sos  l =
 (* If there is no strict inequality, 
    I should nonetheless be able to try something - over Z  > is equivalent to -1  >= *)
 try 
  let l = List.combine l (interval 0 (length l -1)) in
  let (lt,i) =  try (List.find (fun (x,_) -> snd' x =  Mc.Strict) l) 
   with Not_found -> List.hd l in
  let plt = poly_neg (poly_of_term (expr_to_term (fst' lt))) in
  let (n,polys) = sumofsquares plt in (* n * (ci * pi^2) *)
  let pos = Product (Rational_lt n, 
		    List.fold_right (fun (c,p) rst -> Sum (Product (Rational_lt c, Square
		     (term_of_poly p)), rst)) 
		     polys (Rational_lt (Int 0))) in
  let proof = Sum(Axiom_lt i, pos) in
(*  let s,proof' = scale_certificate proof in
  let cert  = snd (cert_of_pos proof') in *)
   Some proof
 with
  | Not_found -> (* This is no strict inequality *) None
  |  x        -> None


type micromega_polys = (Micromega.q Mc.pExpr, Mc.op1) Micromega.prod list
type csdp_certificate = Sos.positivstellensatz option
type provername = string * int option

let main () =
  if Array.length Sys.argv <> 3 then
    (Printf.printf "Usage: csdpcert inputfile outputfile\n"; exit 1);
  let input_file = Sys.argv.(1) in
  let output_file = Sys.argv.(2) in
  let inch = open_in input_file in
  let (prover,poly) = (input_value inch : provername * micromega_polys) in
  close_in inch;
  let cert =
    match prover with
    | "real_nonlinear_prover", Some d -> real_nonlinear_prover d poly
    | "pure_sos", None -> pure_sos poly
    | prover, _ -> (Printf.printf "unknown prover: %s\n" prover; exit 1) in
  let outch = open_out output_file in
  output_value outch (cert:csdp_certificate);
  close_out outch;
  exit 0;;

let _ = main () in ()