summaryrefslogtreecommitdiff
path: root/contrib/micromega/coq_micromega.ml
blob: 02ff61a196d99f85db66520b5c39530384ea32b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-2008                             *)
(*                                                                      *)
(************************************************************************)

open Mutils
let debug = false

let time str f x = 
 let t0 = (Unix.times()).Unix.tms_utime in
 let res = f x in 
 let t1 = (Unix.times()).Unix.tms_utime in 
  (*if debug then*) (Printf.printf "time %s %f\n" str (t1 -. t0) ; 
		     flush stdout); 
  res

type ('a,'b) formula =
  | TT 
  | FF 
  | X of 'b 
  | A of 'a * Names.name
  | C of ('a,'b) formula * ('a,'b) formula * Names.name
  | D of ('a,'b) formula * ('a,'b) formula * Names.name
  | N of ('a,'b) formula * Names.name
  | I of ('a,'b) formula * ('a,'b) formula * Names.name

let none = Names.Anonymous

let tag_formula t f = 
 match f with
  | A(x,_) -> A(x,t)
  | C(x,y,_) -> C(x,y,t)
  | D(x,y,_) -> D(x,y,t)
  | N(x,_) -> N(x,t)
  | I(x,y,_) -> I(x,y,t)
  |   _      -> f

let tt = []
let ff = [ [] ]


type ('constant,'contr) sentence =  
  ('constant Micromega.formula, 'contr) formula

let cnf negate normalise f = 
 let negate a = 
  CoqToCaml.list (fun cl -> CoqToCaml.list (fun x -> x) cl) (negate a) in

 let normalise a = 
  CoqToCaml.list (fun cl -> CoqToCaml.list (fun x -> x) cl) (normalise a) in

 let and_cnf x y = x @ y in
 let or_clause_cnf t f =  List.map (fun x -> t@x ) f in
  
 let rec or_cnf f f'  =
  match f with
   | [] -> tt
   | e :: rst -> (or_cnf rst f') @ (or_clause_cnf e f') in
  
 let rec xcnf  (pol : bool) f    =
  match f with
   | TT -> if pol then tt else ff (* ?? *)
   | FF  -> if pol then ff else tt (* ?? *)
   | X p -> if pol then ff else ff (* ?? *)
   | A(x,t) -> if pol then normalise  x else negate x
   | N(e,t)  -> xcnf  (not pol) e
   | C(e1,e2,t) -> 
      (if pol then and_cnf else or_cnf) (xcnf  pol e1) (xcnf  pol e2)
   | D(e1,e2,t)  -> 
      (if pol then or_cnf else and_cnf) (xcnf  pol e1) (xcnf  pol e2)
   | I(e1,e2,t) -> 
      (if pol then or_cnf else and_cnf) (xcnf  (not pol) e1) (xcnf  pol e2) in

  xcnf  true f



module M =
struct
 open Coqlib
 open Term
  (*    let constant = gen_constant_in_modules "Omicron" coq_modules*)
  
  
 let logic_dir = ["Coq";"Logic";"Decidable"]
 let coq_modules =
  init_modules @ 
   [logic_dir] @ arith_modules @ zarith_base_modules @ 
   [ ["Coq";"Lists";"List"];
     ["ZMicromega"];
     ["Tauto"];
     ["RingMicromega"];
     ["EnvRing"];
     ["Coq"; "micromega"; "ZMicromega"];
     ["Coq" ; "micromega" ; "Tauto"];
     ["Coq" ; "micromega" ; "RingMicromega"];
     ["Coq" ; "micromega" ; "EnvRing"];
     ["Coq";"QArith"; "QArith_base"];
     ["Coq";"Reals" ; "Rdefinitions"];
     ["Coq";"Reals" ; "Rpow_def"];
     ["LRing_normalise"]]
   
 let constant = gen_constant_in_modules "ZMicromega" coq_modules

 let coq_and = lazy (constant "and")
 let coq_or = lazy (constant "or")
 let coq_not = lazy (constant "not")
 let coq_iff = lazy (constant "iff")
 let coq_True = lazy (constant "True")
 let coq_False = lazy (constant "False")
  
 let coq_cons = lazy (constant "cons")
 let coq_nil = lazy (constant "nil")
 let coq_list = lazy (constant "list")

 let coq_O = lazy (constant "O")
 let coq_S = lazy (constant "S")
 let coq_nat = lazy (constant "nat")

 let coq_NO = lazy 
  (gen_constant_in_modules "N" [ ["Coq";"NArith";"BinNat" ]]  "N0")
 let coq_Npos = lazy 
  (gen_constant_in_modules "N" [ ["Coq";"NArith"; "BinNat"]]  "Npos")
  (* let coq_n = lazy (constant "N")*)

 let coq_pair = lazy (constant "pair")
 let coq_None = lazy (constant "None")
 let coq_option = lazy (constant "option")
 let coq_positive = lazy (constant "positive")
 let coq_xH = lazy (constant "xH")
 let coq_xO = lazy (constant "xO")
 let coq_xI = lazy (constant "xI")
  
 let coq_N0 = lazy (constant "N0")
 let coq_N0 = lazy (constant "Npos")


 let coq_Z = lazy (constant "Z")
 let coq_Q = lazy (constant "Q")
 let coq_R = lazy (constant "R")

 let coq_ZERO = lazy (constant  "Z0")
 let coq_POS = lazy (constant  "Zpos")
 let coq_NEG = lazy (constant  "Zneg")

 let coq_QWitness = lazy 
  (gen_constant_in_modules "QMicromega" 
    [["Coq"; "micromega"; "QMicromega"]] "QWitness")
 let coq_ZWitness = lazy 
  (gen_constant_in_modules "QMicromega" 
    [["Coq"; "micromega"; "ZMicromega"]] "ZWitness")


 let coq_Build_Witness = lazy (constant "Build_Witness")


 let coq_Qmake = lazy (constant "Qmake")
 let coq_R0    = lazy (constant "R0")
 let coq_R1    = lazy (constant "R1")


 let coq_proofTerm = lazy (constant "ProofTerm")
 let coq_ratProof = lazy (constant "RatProof")
 let coq_cutProof = lazy (constant "CutProof")
 let coq_enumProof = lazy (constant "EnumProof")

 let coq_Zgt = lazy (constant "Zgt")
 let coq_Zge = lazy (constant "Zge")
 let coq_Zle = lazy (constant "Zle")
 let coq_Zlt = lazy (constant "Zlt")
 let coq_Eq  = lazy (constant "eq")

 let coq_Zplus = lazy (constant "Zplus")
 let coq_Zminus = lazy (constant "Zminus")
 let coq_Zopp = lazy (constant "Zopp")
 let coq_Zmult = lazy (constant "Zmult")
 let coq_Zpower = lazy (constant "Zpower")
 let coq_N_of_Z = lazy 
  (gen_constant_in_modules "ZArithRing" 
    [["Coq";"setoid_ring";"ZArithRing"]] "N_of_Z")

 let coq_Qgt = lazy (constant "Qgt")
 let coq_Qge = lazy (constant "Qge")
 let coq_Qle = lazy (constant "Qle")
 let coq_Qlt = lazy (constant "Qlt")
 let coq_Qeq = lazy (constant "Qeq")


 let coq_Qplus = lazy (constant "Qplus")
 let coq_Qminus = lazy (constant "Qminus")
 let coq_Qopp = lazy (constant "Qopp")
 let coq_Qmult = lazy (constant "Qmult")
 let coq_Qpower = lazy (constant "Qpower")


 let coq_Rgt = lazy (constant "Rgt")
 let coq_Rge = lazy (constant "Rge")
 let coq_Rle = lazy (constant "Rle")
 let coq_Rlt = lazy (constant "Rlt")

 let coq_Rplus = lazy (constant "Rplus")
 let coq_Rminus = lazy (constant "Rminus")
 let coq_Ropp = lazy (constant "Ropp")
 let coq_Rmult = lazy (constant "Rmult")
 let coq_Rpower = lazy (constant "pow")


 let coq_PEX = lazy (constant "PEX" )
 let coq_PEc = lazy (constant"PEc")
 let coq_PEadd = lazy (constant "PEadd")
 let coq_PEopp = lazy (constant "PEopp")
 let coq_PEmul = lazy (constant "PEmul")
 let coq_PEsub = lazy (constant "PEsub")
 let coq_PEpow = lazy (constant "PEpow")


 let coq_OpEq = lazy (constant "OpEq")
 let coq_OpNEq = lazy (constant "OpNEq")
 let coq_OpLe = lazy (constant "OpLe")
 let coq_OpLt = lazy (constant  "OpLt")
 let coq_OpGe = lazy (constant "OpGe")
 let coq_OpGt = lazy (constant  "OpGt")


 let coq_S_In = lazy (constant "S_In")
 let coq_S_Square = lazy (constant "S_Square")
 let coq_S_Monoid = lazy (constant "S_Monoid")
 let coq_S_Ideal = lazy (constant "S_Ideal")
 let coq_S_Mult = lazy (constant "S_Mult")
 let coq_S_Add  = lazy (constant "S_Add")
 let coq_S_Pos  = lazy (constant "S_Pos")
 let coq_S_Z    = lazy (constant "S_Z")
 let coq_coneMember    = lazy (constant "coneMember")
  

 let coq_make_impl = lazy 
  (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_impl")
 let coq_make_conj = lazy 
  (gen_constant_in_modules "Zmicromega" [["Refl"]] "make_conj")

 let coq_Build = lazy 
  (gen_constant_in_modules "RingMicromega" 
    [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] 
    "Build_Formula")
 let coq_Cstr = lazy 
  (gen_constant_in_modules "RingMicromega" 
    [["Coq" ; "micromega" ; "RingMicromega"] ; ["RingMicromega"] ] "Formula")


 type parse_error  = 
   | Ukn 
   | BadStr of string 
   | BadNum of int 
   | BadTerm of Term.constr 
   | Msg   of string
   | Goal of (Term.constr list ) * Term.constr * parse_error

 let string_of_error = function
  | Ukn -> "ukn"
  | BadStr s -> s
  | BadNum i -> string_of_int i
  | BadTerm _ -> "BadTerm"
  | Msg  s    -> s
  | Goal _    -> "Goal"


 exception ParseError 




 let get_left_construct term = 
  match Term.kind_of_term term with
   | Term.Construct(_,i) -> (i,[| |])
   | Term.App(l,rst) -> 
      (match Term.kind_of_term l with
       | Term.Construct(_,i) -> (i,rst)
       |   _     -> raise ParseError
      )
   | _ ->   raise ParseError
      
 module Mc = Micromega
      
 let rec parse_nat term = 
  let (i,c) = get_left_construct term in
   match i with
    | 1 -> Mc.O
    | 2 -> Mc.S (parse_nat (c.(0)))
    | i -> raise ParseError
       

 let pp_nat o n = Printf.fprintf o "%i" (CoqToCaml.nat n)


 let rec dump_nat x = 
  match x with
   | Mc.O -> Lazy.force coq_O
   | Mc.S p -> Term.mkApp(Lazy.force coq_S,[| dump_nat p |])


 let rec parse_positive term = 
  let (i,c) = get_left_construct term in
   match i with
    | 1 -> Mc.XI (parse_positive c.(0))
    | 2 -> Mc.XO (parse_positive c.(0))
    | 3 -> Mc.XH
    | i -> raise ParseError
       

 let rec dump_positive x = 
  match x with
   | Mc.XH -> Lazy.force coq_xH
   | Mc.XO p -> Term.mkApp(Lazy.force coq_xO,[| dump_positive p |])
   | Mc.XI p -> Term.mkApp(Lazy.force coq_xI,[| dump_positive p |])

 let pp_positive o x = Printf.fprintf o "%i" (CoqToCaml.positive x)	  


 let rec dump_n x = 
  match x with 
   | Mc.N0 -> Lazy.force coq_N0
   | Mc.Npos p -> Term.mkApp(Lazy.force coq_Npos,[| dump_positive p|])

 let rec dump_index x = 
  match x with
   | Mc.XH -> Lazy.force coq_xH
   | Mc.XO p -> Term.mkApp(Lazy.force coq_xO,[| dump_index p |])
   | Mc.XI p -> Term.mkApp(Lazy.force coq_xI,[| dump_index p |])


 let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x)	  

 let rec dump_n x = 
  match x with
   | Mc.N0 -> Lazy.force coq_NO
   | Mc.Npos p -> Term.mkApp(Lazy.force coq_Npos,[| dump_positive p |])

 let rec pp_n o x =  output_string o  (string_of_int (CoqToCaml.n x))

 let dump_pair t1 t2 dump_t1 dump_t2 (Mc.Pair (x,y)) =
  Term.mkApp(Lazy.force coq_pair,[| t1 ; t2 ; dump_t1 x ; dump_t2 y|])


 let rec parse_z term =
  let (i,c) = get_left_construct term in
   match i with
    | 1 -> Mc.Z0
    | 2 -> Mc.Zpos (parse_positive c.(0))
    | 3 -> Mc.Zneg (parse_positive c.(0))
    | i -> raise ParseError

 let dump_z x =
  match x with
   | Mc.Z0 ->Lazy.force coq_ZERO
   | Mc.Zpos p -> Term.mkApp(Lazy.force coq_POS,[| dump_positive p|]) 
   | Mc.Zneg p -> Term.mkApp(Lazy.force coq_NEG,[| dump_positive p|])  

 let pp_z o x = Printf.fprintf o "%i" (CoqToCaml.z x)

let dump_num bd1 = 
 Term.mkApp(Lazy.force coq_Qmake,
	   [|dump_z (CamlToCoq.bigint (numerator bd1)) ; 
	     dump_positive (CamlToCoq.positive_big_int (denominator bd1)) |])


let dump_q q = 
 Term.mkApp(Lazy.force coq_Qmake, 
	   [| dump_z q.Micromega.qnum ; dump_positive q.Micromega.qden|])

let parse_q term =  
 match Term.kind_of_term term with
  | Term.App(c, args) -> if c = Lazy.force coq_Qmake then
	{Mc.qnum = parse_z args.(0) ; Mc.qden = parse_positive args.(1) }
      else raise ParseError
  |  _ -> raise ParseError

  
 let rec parse_list parse_elt term = 
  let (i,c) = get_left_construct term in
   match i with
    | 1 -> Mc.Nil
    | 2 -> Mc.Cons(parse_elt c.(1), parse_list parse_elt c.(2))
    | i -> raise ParseError


 let rec dump_list typ dump_elt l =
  match l with
   | Mc.Nil -> Term.mkApp(Lazy.force coq_nil,[| typ |])
   | Mc.Cons(e,l) -> Term.mkApp(Lazy.force coq_cons, 
			       [| typ; dump_elt e;dump_list typ dump_elt l|])
      
 let rec dump_ml_list typ dump_elt l =
  match l with
   | [] -> Term.mkApp(Lazy.force coq_nil,[| typ |])
   | e::l -> Term.mkApp(Lazy.force coq_cons, 
		       [| typ; dump_elt e;dump_ml_list typ dump_elt l|])



 let pp_list op cl elt o l = 
  let rec _pp  o l = 
   match l with
    | Mc.Nil -> ()
    | Mc.Cons(e,Mc.Nil) -> Printf.fprintf o "%a" elt e
    | Mc.Cons(e,l) -> Printf.fprintf o "%a ,%a" elt e  _pp l in
   Printf.fprintf o "%s%a%s" op _pp l cl 



 let pp_var  = pp_positive
 let dump_var = dump_positive

 let rec pp_expr o e = 
  match e with
   | Mc.PEX n -> Printf.fprintf o "V %a" pp_var n
   | Mc.PEc z -> pp_z o z
   | Mc.PEadd(e1,e2) -> Printf.fprintf o "(%a)+(%a)" pp_expr e1 pp_expr e2
   | Mc.PEmul(e1,e2) -> Printf.fprintf o "%a*(%a)" pp_expr e1 pp_expr e2
   | Mc.PEopp e -> Printf.fprintf o "-(%a)" pp_expr e
   | Mc.PEsub(e1,e2) -> Printf.fprintf o "(%a)-(%a)" pp_expr e1 pp_expr e2
   | Mc.PEpow(e,n) -> Printf.fprintf o "(%a)^(%a)" pp_expr e pp_n  n


 let  dump_expr typ dump_z e =
  let rec dump_expr  e =
  match e with
   | Mc.PEX n -> mkApp(Lazy.force coq_PEX,[| typ; dump_var n |])
   | Mc.PEc z -> mkApp(Lazy.force coq_PEc,[| typ ; dump_z z |])
   | Mc.PEadd(e1,e2) -> mkApp(Lazy.force coq_PEadd,
			     [| typ; dump_expr e1;dump_expr e2|])
   | Mc.PEsub(e1,e2) -> mkApp(Lazy.force coq_PEsub,
			     [| typ; dump_expr  e1;dump_expr  e2|])
   | Mc.PEopp e -> mkApp(Lazy.force coq_PEopp,
			[| typ; dump_expr  e|])
   | Mc.PEmul(e1,e2) ->  mkApp(Lazy.force coq_PEmul,
			      [| typ; dump_expr  e1;dump_expr e2|])
   | Mc.PEpow(e,n) ->  mkApp(Lazy.force coq_PEpow,
			    [| typ; dump_expr  e; dump_n  n|])
     in
   dump_expr e

 let rec dump_monoid l = dump_list (Lazy.force coq_nat) dump_nat l

 let rec dump_cone typ dump_z e = 
  let z = Lazy.force typ in 
 let rec dump_cone e =
  match e with
   | Mc.S_In n -> mkApp(Lazy.force coq_S_In,[| z; dump_nat n |])
   | Mc.S_Ideal(e,c) -> mkApp(Lazy.force coq_S_Ideal, 
			     [| z; dump_expr z dump_z e ; dump_cone c |])
   | Mc.S_Square e -> mkApp(Lazy.force coq_S_Square, 
			   [| z;dump_expr z dump_z e|])
   | Mc.S_Monoid l -> mkApp (Lazy.force coq_S_Monoid, 
			    [|z; dump_monoid l|])
   | Mc.S_Add(e1,e2) -> mkApp(Lazy.force coq_S_Add,
			     [| z; dump_cone e1; dump_cone e2|])
   | Mc.S_Mult(e1,e2) -> mkApp(Lazy.force coq_S_Mult,
			      [| z; dump_cone e1; dump_cone e2|])
   | Mc.S_Pos p -> mkApp(Lazy.force coq_S_Pos,[| z; dump_z p|])
   | Mc.S_Z    -> mkApp( Lazy.force coq_S_Z,[| z|]) in 
  dump_cone e


 let  pp_cone pp_z o e = 
  let rec pp_cone o e = 
   match e with 
    | Mc.S_In n -> 
       Printf.fprintf o "(S_In %a)%%nat" pp_nat n
    | Mc.S_Ideal(e,c) -> 
       Printf.fprintf o "(S_Ideal %a %a)" pp_expr e pp_cone c
    | Mc.S_Square e -> 
       Printf.fprintf o "(S_Square %a)" pp_expr e
    | Mc.S_Monoid l -> 
       Printf.fprintf o "(S_Monoid %a)" (pp_list "[" "]" pp_nat) l
    | Mc.S_Add(e1,e2) -> 
       Printf.fprintf o "(S_Add %a %a)" pp_cone e1 pp_cone e2
    | Mc.S_Mult(e1,e2) -> 
       Printf.fprintf o "(S_Mult %a %a)" pp_cone e1 pp_cone e2
    | Mc.S_Pos p -> 
       Printf.fprintf o "(S_Pos %a)%%positive" pp_z p
    | Mc.S_Z    -> 
       Printf.fprintf o "S_Z" in
   pp_cone o e


 let rec dump_op = function
  | Mc.OpEq-> Lazy.force coq_OpEq
  | Mc.OpNEq-> Lazy.force coq_OpNEq
  | Mc.OpLe -> Lazy.force coq_OpLe
  | Mc.OpGe -> Lazy.force coq_OpGe
  | Mc.OpGt-> Lazy.force coq_OpGt
  | Mc.OpLt-> Lazy.force coq_OpLt



 let pp_op o e= 
  match e with 
   | Mc.OpEq-> Printf.fprintf o "="
   | Mc.OpNEq-> Printf.fprintf o "<>"
   | Mc.OpLe -> Printf.fprintf o "=<"
   | Mc.OpGe -> Printf.fprintf o ">="
   | Mc.OpGt-> Printf.fprintf o ">"
   | Mc.OpLt-> Printf.fprintf o "<"




 let pp_cstr o {Mc.flhs = l ; Mc.fop = op ; Mc.frhs = r } =
  Printf.fprintf o"(%a %a %a)" pp_expr l pp_op op pp_expr r

 let dump_cstr typ dump_constant {Mc.flhs = e1 ; Mc.fop = o ; Mc.frhs = e2} =
   Term.mkApp(Lazy.force coq_Build,
	     [| typ; dump_expr typ dump_constant e1 ; 
		dump_op o ; 
		dump_expr typ dump_constant e2|])

 let assoc_const x l = 
  try 
  snd (List.find (fun (x',y) -> x = Lazy.force x') l)
  with
    Not_found -> raise ParseError

 let zop_table = [ 
  coq_Zgt, Mc.OpGt ; 
  coq_Zge, Mc.OpGe ;
  coq_Zlt, Mc.OpLt ;
  coq_Zle, Mc.OpLe ]

 let rop_table = [ 
  coq_Rgt, Mc.OpGt ; 
  coq_Rge, Mc.OpGe ;
  coq_Rlt, Mc.OpLt ;
  coq_Rle, Mc.OpLe ]

 let qop_table = [ 
  coq_Qlt, Mc.OpLt ;
  coq_Qle, Mc.OpLe ;
  coq_Qeq, Mc.OpEq
 ]


 let parse_zop (op,args) =
  match kind_of_term op with
   | Const x -> (assoc_const op zop_table, args.(0) , args.(1))
   |  Ind(n,0) -> 
       if op = Lazy.force coq_Eq &&   args.(0) = Lazy.force coq_Z
       then (Mc.OpEq, args.(1), args.(2))
       else raise ParseError
   |   _ -> failwith "parse_zop"


 let parse_rop (op,args) =
   match kind_of_term op with
    | Const x -> (assoc_const op rop_table, args.(0) , args.(1))
    |  Ind(n,0) -> 
       if op = Lazy.force coq_Eq &&   args.(0) = Lazy.force coq_R
       then (Mc.OpEq, args.(1), args.(2))
       else raise ParseError
   |   _ -> failwith "parse_zop"

 let parse_qop (op,args) =
   (assoc_const op qop_table, args.(0) , args.(1))


 module Env =
 struct 
  type t = constr list
    
  let compute_rank_add env v =
   let rec _add env n v =
    match env with
     | [] -> ([v],n)
     | e::l -> 
	if eq_constr e v 
	then (env,n)
	else 
	 let (env,n) = _add l ( n+1) v in
	  (e::env,n) in
   let (env, n) =  _add env 1 v in
    (env, CamlToCoq.idx n)

     
  let empty = []
   
  let elements env = env

 end


 let is_constant t = (* This is an approx *)
  match kind_of_term t with
   | Construct(i,_) -> true 
   |   _ -> false


 type 'a op = 
   | Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr) 
   | Opp 
   | Power 
   | Ukn of string


 let assoc_ops x l = 
  try 
    snd (List.find (fun (x',y) -> x = Lazy.force x') l)
  with
    Not_found -> Ukn "Oups"



 let parse_expr parse_constant parse_exp ops_spec env term = 
 if debug 
 then (Pp.pp (Pp.str "parse_expr: ");   
       Pp.pp_flush ();Pp.pp (Printer.prterm  term); Pp.pp_flush ());

  let constant_or_variable env term = 
   try 
    ( Mc.PEc (parse_constant term) , env)
   with ParseError -> 
    let (env,n) = Env.compute_rank_add env term in
     (Mc.PEX  n , env) in

  let rec parse_expr env term = 
   let combine env op (t1,t2) =
    let (expr1,env) = parse_expr env t1 in
    let (expr2,env) = parse_expr env t2 in
    (op expr1 expr2,env) in
    match kind_of_term term with
     | App(t,args) -> 
	(
	 match kind_of_term t with
	  | Const c -> 
	     ( match assoc_ops t ops_spec  with
	      | Binop f -> combine env f (args.(0),args.(1))
	      | Opp     -> let (expr,env) = parse_expr env args.(0) in
			    (Mc.PEopp expr, env)
	      | Power   -> 
		 let (expr,env) = parse_expr env args.(0) in
		 let exp = (parse_exp args.(1)) in 
		  (Mc.PEpow(expr, exp)  , env) 
	      | Ukn  s -> 
		 if debug 
		 then (Printf.printf "unknown op: %s\n" s; flush stdout;);
		 let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
	     )
	  |   _ -> constant_or_variable env term
	)
     | _ -> constant_or_variable env term in
   parse_expr env term
    

 let zop_spec = 
   [ 
     coq_Zplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
     coq_Zminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
     coq_Zmult  , Binop  (fun x y -> Mc.PEmul (x,y)) ; 
     coq_Zopp   , Opp ; 
     coq_Zpower , Power]

let qop_spec = 
  [
     coq_Qplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
     coq_Qminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
     coq_Qmult  , Binop  (fun x y -> Mc.PEmul (x,y)) ; 
     coq_Qopp   , Opp ; 
     coq_Qpower , Power]

let rop_spec = 
  [
     coq_Rplus , Binop (fun x y -> Mc.PEadd(x,y)) ;
     coq_Rminus , Binop (fun x y -> Mc.PEsub(x,y)) ;
     coq_Rmult  , Binop  (fun x y -> Mc.PEmul (x,y)) ; 
     coq_Ropp   , Opp ; 
     coq_Rpower , Power]




      
let zconstant = parse_z
let qconstant = parse_q


let rconstant term = 
 if debug 
 then (Pp.pp_flush ();
       Pp.pp (Pp.str "rconstant: ");
       Pp.pp (Printer.prterm  term); Pp.pp_flush ());
 match Term.kind_of_term term with
  | Const x ->  
      if term = Lazy.force coq_R0
      then Mc.Z0
      else if term = Lazy.force coq_R1
      then Mc.Zpos Mc.XH
      else raise ParseError
  |  _ -> raise ParseError


let parse_zexpr = 
 parse_expr zconstant (fun x -> Mc.n_of_Z (parse_z x))  zop_spec 
let parse_qexpr  = 
 parse_expr qconstant (fun x -> Mc.n_of_Z (parse_z x)) qop_spec 
let parse_rexpr = 
 parse_expr rconstant  (fun x -> Mc.n_of_nat (parse_nat x)) rop_spec


 let  parse_arith parse_op parse_expr env cstr = 
  if debug 
  then (Pp.pp_flush ();
	Pp.pp (Pp.str "parse_arith: ");
	Pp.pp (Printer.prterm  cstr); 
	Pp.pp_flush ());
  match kind_of_term cstr with
   | App(op,args) -> 
      let (op,lhs,rhs) = parse_op (op,args) in
      let (e1,env) = parse_expr env lhs in
      let (e2,env) = parse_expr env rhs in
       ({Mc.flhs = e1; Mc.fop = op;Mc.frhs = e2},env)
   |  _ -> failwith "error : parse_arith(2)"

 let parse_zarith = parse_arith  parse_zop parse_zexpr 
  
 let parse_qarith = parse_arith  parse_qop parse_qexpr
  
 let parse_rarith = parse_arith  parse_rop parse_rexpr
  
  
 (* generic parsing of arithmetic expressions *)
  



 let rec f2f = function
  | TT  -> Mc.TT
  | FF  -> Mc.FF
  | X _  -> Mc.X
  | A (x,_) -> Mc.A x
  | C (a,b,_)  -> Mc.Cj(f2f a,f2f b)
  | D (a,b,_)  -> Mc.D(f2f a,f2f b)
  | N (a,_) -> Mc.N(f2f a)
  | I(a,b,_)  -> Mc.I(f2f a,f2f b)

 let is_prop t = 
  match t with
   | Names.Anonymous -> true (* Not quite right *)
   | Names.Name x    -> false

 let mkC f1 f2 = C(f1,f2,none)
 let mkD f1 f2 = D(f1,f2,none)
 let mkIff f1 f2 = C(I(f1,f2,none),I(f2,f2,none),none)
 let mkI f1 f2 = I(f1,f2,none)

 let mkformula_binary g term f1 f2 =
   match f1 , f2 with
   |  X _  , X _ -> X(term)
   |   _         -> g f1 f2

 let parse_formula parse_atom env term =
  let parse_atom env t = try let (at,env) = parse_atom env t in (A(at,none), env) with _ -> (X(t),env) in

  let rec xparse_formula env term =
   match kind_of_term term with
    | App(l,rst) ->
        (match rst with
         | [|a;b|] when l = Lazy.force coq_and ->
	     let f,env = xparse_formula env a in
	     let g,env = xparse_formula env b in
             mkformula_binary mkC term f g,env
         | [|a;b|] when l = Lazy.force coq_or ->
	     let f,env = xparse_formula env a in
	     let g,env = xparse_formula env b in
             mkformula_binary mkD term f g,env
         | [|a|] when l = Lazy.force coq_not ->
             let (f,env) = xparse_formula env a in (N(f,none), env)
         | [|a;b|] when l = Lazy.force coq_iff ->
	     let f,env = xparse_formula env a in
	     let g,env = xparse_formula env b in
             mkformula_binary mkIff term f g,env
         | _ -> parse_atom env term)
    | Prod(typ,a,b) when not (Termops.dependent (mkRel 1) b) ->
	let f,env = xparse_formula env a in
	let g,env = xparse_formula env b in
        mkformula_binary mkI term f g,env
    | _ when term = Lazy.force coq_True -> (TT,env)
    | _ when term = Lazy.force coq_False -> (FF,env)
    | _  -> X(term),env in
  xparse_formula env term

 let coq_TT = lazy 
  (gen_constant_in_modules "ZMicromega" 
    [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "TT")
 let coq_FF = lazy 
  (gen_constant_in_modules "ZMicromega" 
    [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "FF")
 let coq_And = lazy 
  (gen_constant_in_modules "ZMicromega"    
    [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "Cj")
 let coq_Or = lazy 
  (gen_constant_in_modules "ZMicromega"  
    [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]    "D")
 let coq_Neg = lazy 
  (gen_constant_in_modules "ZMicromega" 
    [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "N")
 let coq_Atom = lazy 
  (gen_constant_in_modules "ZMicromega" 
    [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "A")
 let coq_X = lazy 
  (gen_constant_in_modules "ZMicromega"  
    [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "X")
 let coq_Impl = lazy 
  (gen_constant_in_modules "ZMicromega" 
    [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "I")
 let coq_Formula = lazy 
  (gen_constant_in_modules "ZMicromega" 
    [["Coq" ; "micromega" ; "Tauto"];["Tauto"]]  "BFormula")

 let dump_formula typ dump_atom f = 
  let rec xdump f = 
   match f with
    | TT  -> mkApp(Lazy.force coq_TT,[| typ|])
    | FF  -> mkApp(Lazy.force coq_FF,[| typ|])
    | C(x,y,_) -> mkApp(Lazy.force coq_And,[| typ ; xdump x ; xdump y|])
    | D(x,y,_) -> mkApp(Lazy.force coq_Or,[| typ ; xdump x ; xdump y|])
    | I(x,y,_) -> mkApp(Lazy.force coq_Impl,[| typ ; xdump x ; xdump y|])
    | N(x,_) -> mkApp(Lazy.force coq_Neg,[| typ ; xdump x|])
    | A(x,_) -> mkApp(Lazy.force coq_Atom,[| typ ; dump_atom x|]) 
    | X(t) -> mkApp(Lazy.force coq_X,[| typ ; t|])  in

   xdump f
    



 (* ! reverse the list of bindings *)
 let set l concl =
  let rec _set acc = function
   | [] -> acc
   | (e::l) ->  
      let (name,expr,typ) = e in
       _set (Term.mkNamedLetIn
	      (Names.id_of_string name)
	      expr typ acc) l in
   _set concl l


end            

open M


let rec sig_of_cone = function
 | Mc.S_In n -> [CoqToCaml.nat n]
 | Mc.S_Ideal(e,w) -> sig_of_cone w
 | Mc.S_Mult(w1,w2) ->
    (sig_of_cone w1)@(sig_of_cone w2)
 | Mc.S_Add(w1,w2) -> 	(sig_of_cone w1)@(sig_of_cone w2)
 | _  -> []

let same_proof sg cl1 cl2 =
 let cl1 = CoqToCaml.list (fun x -> x) cl1 in
 let cl2 = CoqToCaml.list (fun x -> x) cl2 in
 let rec xsame_proof sg = 
  match sg with
   | [] -> true
   | n::sg -> (try List.nth cl1 n = List.nth cl2 n with _ -> false) 
      && (xsame_proof sg ) in
  xsame_proof sg




let tags_of_clause tgs wit clause = 
 let rec xtags tgs = function
  | Mc.S_In n -> Names.Idset.union tgs  
     (snd (List.nth clause (CoqToCaml.nat n) ))
  | Mc.S_Ideal(e,w) -> xtags tgs w
  | Mc.S_Mult (w1,w2) | Mc.S_Add(w1,w2) -> xtags (xtags tgs w1) w2
  |   _   -> tgs in
  xtags tgs wit

let tags_of_cnf wits cnf = 
 List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl) 
  Names.Idset.empty wits cnf


let find_witness prover  polys1 =
 let l = CoqToCaml.list (fun x -> x) polys1 in
  try_any prover l

let rec witness prover   l1 l2 = 
 match l2 with
  | Micromega.Nil -> Some (Micromega.Nil)
  | Micromega.Cons(e,l2) -> 
     match find_witness prover   (Micromega.Cons( e,l1)) with
      | None -> None
      | Some w -> 
	 (match witness prover   l1 l2 with
	  | None -> None
	  | Some l -> Some (Micromega.Cons (w,l))
	 )


let rec apply_ids t ids = 
 match ids with
  | [] -> t
  | i::ids -> apply_ids (Term.mkApp(t,[| Term.mkVar i |])) ids

     
let coq_Node = lazy 
 (Coqlib.gen_constant_in_modules "VarMap" 
   [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Node")
let coq_Leaf = lazy 
 (Coqlib.gen_constant_in_modules "VarMap" 
   [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "Leaf")
let coq_Empty = lazy 
 (Coqlib.gen_constant_in_modules "VarMap" 
   [["Coq" ; "micromega" ;"VarMap"];["VarMap"]] "Empty")
 
 
let btree_of_array typ a  =
 let size_of_a = Array.length a in
 let semi_size_of_a = size_of_a lsr 1 in
 let node = Lazy.force coq_Node
 and leaf = Lazy.force coq_Leaf
 and empty = Term.mkApp (Lazy.force coq_Empty, [| typ |]) in
 let rec aux n =
  if n > size_of_a 
  then empty
  else if  n > semi_size_of_a 
  then Term.mkApp (leaf, [| typ; a.(n-1) |])
  else Term.mkApp (node, [| typ; aux (2*n); a.(n-1); aux (2*n+1) |])
 in 
  aux 1

let btree_of_array typ a = 
 try 
  btree_of_array typ a
 with x -> 
  failwith (Printf.sprintf "btree of array : %s" (Printexc.to_string x))

let dump_varmap typ env =
 btree_of_array typ (Array.of_list env)


let rec pp_varmap o vm = 
 match vm with
  | Mc.Empty -> output_string o "[]"
  | Mc.Leaf z -> Printf.fprintf o "[%a]" pp_z  z
  | Mc.Node(l,z,r) -> Printf.fprintf o "[%a, %a, %a]" pp_varmap l  pp_z z pp_varmap r



let rec dump_proof_term = function 
 | Micromega.RatProof cone -> 
    Term.mkApp(Lazy.force coq_ratProof, [|dump_cone coq_Z dump_z cone|])
 | Micromega.CutProof(e,q,cone,prf) ->
    Term.mkApp(Lazy.force coq_cutProof, 
	      [| dump_expr (Lazy.force coq_Z) dump_z e ; 
		 dump_q q ; 
		 dump_cone coq_Z dump_z cone ; 
		 dump_proof_term prf|])
 | Micromega.EnumProof( q1,e1,q2,c1,c2,prfs) -> 
    Term.mkApp (Lazy.force coq_enumProof,
	       [| dump_q q1 ; dump_expr (Lazy.force coq_Z) dump_z e1 ; dump_q q2;
		  dump_cone coq_Z dump_z c1 ; dump_cone coq_Z dump_z c2 ; 
		  dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |])

let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden
 
 
let rec pp_proof_term o = function
 | Micromega.RatProof cone -> Printf.fprintf o "R[%a]" (pp_cone pp_z) cone
 | Micromega.CutProof(e,q,_,p) -> failwith "not implemented"
 | Micromega.EnumProof(q1,e1,q2,c1,c2,rst) -> 
    Printf.fprintf o "EP[%a,%a,%a,%a,%a,%a]" 
     pp_q q1 pp_expr e1 pp_q q2 (pp_cone pp_z) c1 (pp_cone pp_z) c2 
     (pp_list "[" "]" pp_proof_term) rst

let rec parse_hyps parse_arith env hyps =
 match hyps with
  | [] -> ([],env)
  | (i,t)::l -> 
     let (lhyps,env) = parse_hyps parse_arith env l in
      try 
       let (c,env) = parse_formula parse_arith env  t in
	((i,c)::lhyps, env)
      with _ -> 		(lhyps,env)
       (*(if debug then Printf.printf "parse_arith : %s\n" x);*)


exception ParseError

let parse_goal parse_arith env hyps term = 
 (*  try*)
 let (f,env) = parse_formula parse_arith env term in
 let (lhyps,env) = parse_hyps parse_arith env hyps in
  (lhyps,f,env)
   (*  with Failure x -> raise ParseError*)


type ('a, 'b) domain_spec = { 
 typ : Term.constr; (* Z, Q , R *)
 coeff : Term.constr ; (* Z, Q *)
 dump_coeff : 'a -> Term.constr ; 
 proof_typ : Term.constr ; 
 dump_proof : 'b -> Term.constr
}

let zz_domain_spec  = lazy {
 typ = Lazy.force coq_Z;
 coeff = Lazy.force coq_Z;
 dump_coeff = dump_z ;
 proof_typ = Lazy.force coq_proofTerm ;
 dump_proof = dump_proof_term
}

let qq_domain_spec  = lazy {
 typ = Lazy.force coq_Q;
 coeff = Lazy.force coq_Q;
 dump_coeff = dump_q ;
 proof_typ = Lazy.force coq_QWitness ;
 dump_proof = dump_cone coq_Q dump_q
}

let rz_domain_spec = lazy {
 typ = Lazy.force coq_R;
 coeff = Lazy.force coq_Z;
 dump_coeff = dump_z;
 proof_typ = Lazy.force coq_ZWitness ;
 dump_proof = dump_cone coq_Z dump_z
}




let micromega_order_change spec cert cert_typ env  ff gl = 
 let formula_typ = (Term.mkApp( Lazy.force coq_Cstr,[|  spec.coeff|])) in

 let ff = dump_formula formula_typ (dump_cstr spec.coeff spec.dump_coeff) ff in
 let vm  = dump_varmap  ( spec.typ)  env in
  Tactics.change_in_concl None
   (set 
     [ 
      ("__ff", ff, Term.mkApp(Lazy.force coq_Formula ,[| formula_typ |]));
      ("__varmap", vm , Term.mkApp 
       (Coqlib.gen_constant_in_modules "VarMap" 
	 [["Coq" ; "micromega" ; "VarMap"];["VarMap"]] "t", [|  spec.typ|]));
      ("__wit", cert,cert_typ)
     ]  	
     (Tacmach.pf_concl gl )

       )
   gl 
   

let detect_duplicates cnf wit = 
 let cnf = CoqToCaml.list (fun x -> x) cnf in
 let wit = CoqToCaml.list (fun x -> x) wit in

 let rec xdup cnf wit = 
  match wit with
   | [] -> []
   | w :: wit -> 
      let sg = sig_of_cone w in
       match cnf with
	| [] -> []
	| e::cnf -> 
	   let (dups,cnf) = (List.partition (fun x -> same_proof sg e x) cnf) in
	    dups@(xdup cnf wit) in
  xdup cnf wit

let find_witness prover    polys1 =
 try_any prover polys1


let witness_list_with_tags prover l = 
 
 let rec xwitness_list l = 
  match l with
   | [] -> Some([])
   | e::l -> 
      match find_witness prover  (List.map fst e)  with
       | None -> None
       | Some w -> 
	  (match xwitness_list l with
	   | None -> None
	   | Some l -> Some (w::l)
	  ) in
  xwitness_list l

let witness_list_without_tags prover l = 
 
 let rec xwitness_list l = 
  match l with
   | [] -> Some([])
   | e::l -> 
      match find_witness prover e  with
       | None -> None
       | Some w -> 
	  (match xwitness_list l with
	   | None -> None
	   | Some l -> Some (w::l)
	  ) in
  xwitness_list l

let witness_list prover l = 
 let rec xwitness_list l = 
  match l with
   | Micromega.Nil -> Some(Micromega.Nil)
   | Micromega.Cons(e,l) -> 
      match find_witness prover e  with
       | None -> None
       | Some w -> 
	  (match xwitness_list l with
	   | None -> None
	   | Some l -> Some (Micromega.Cons(w,l))
	  ) in
  xwitness_list l




let is_singleton = function [] -> true | [e] -> true | _ -> false
 

let micromega_tauto negate normalise spec prover env polys1 polys2  gl = 
 let spec = Lazy.force spec in 
 let (ff,ids) = 
  List.fold_right 
   (fun (id,f)  (cc,ids) -> 
    match f with 
      X _ -> (cc,ids) 
     | _ -> (I(tag_formula (Names.Name id) f,cc,none), id::ids)) 
   polys1 (polys2,[]) in

 let cnf_ff = cnf negate normalise ff in

  if debug then 
   (Pp.pp (Pp.str "Formula....\n") ;
     let formula_typ = (Term.mkApp( Lazy.force coq_Cstr,[| spec.coeff|])) in
     let ff = dump_formula formula_typ 
      (dump_cstr spec.typ spec.dump_coeff) ff in
      Pp.pp (Printer.prterm  ff) ;  Pp.pp_flush ()) ;

   match witness_list_without_tags prover  cnf_ff with
    | None -> Tacticals.tclFAIL 0 (Pp.str "Cannot find witness") gl
    | Some res -> (*Printf.printf "\nList %i" (List.length res); *)
       let (ff,res,ids) = (ff,res,List.map Term.mkVar ids) in
       let res' = dump_ml_list (spec.proof_typ) spec.dump_proof  res in
	(Tacticals.tclTHENSEQ
	  [
	   Tactics.generalize ids;
	   micromega_order_change spec res' 
	    (Term.mkApp(Lazy.force coq_list,[|  spec.proof_typ|]))  env  ff ;
	   ]) gl


let micromega_gen parse_arith negate normalise spec  prover   gl =
 let concl = Tacmach.pf_concl gl in
 let hyps  = Tacmach.pf_hyps_types gl in
  try
   let (hyps,concl,env) = parse_goal parse_arith Env.empty hyps concl in
   let env = Env.elements env in
    micromega_tauto negate normalise spec prover env hyps concl gl
  with 
   | Failure x -> flush stdout ; Pp.pp_flush () ; 
      Tacticals.tclFAIL 0 (Pp.str x) gl
   | ParseError  -> Tacticals.tclFAIL 0 (Pp.str "Bad logical fragment") gl


let lift_ratproof prover l =
 match prover l with
  | None -> None
  | Some c -> Some (Mc.RatProof c)


type csdpcert = Sos.positivstellensatz option
type micromega_polys = (Micromega.q Mc.pExpr, Mc.op1) Micromega.prod list
type provername = string * int option

let call_csdpcert provername poly =
  let tmp_to,ch_to = Filename.open_temp_file "csdpcert" ".in" in
  let tmp_from = Filename.temp_file "csdpcert" ".out" in
  output_value ch_to (provername,poly : provername * micromega_polys);
  close_out ch_to;
  let cmdname =
    Filename.concat Coq_config.bindir
      ("csdpcert" ^ Coq_config.exec_extension) in
  let c = Sys.command (cmdname ^" "^ tmp_to ^" "^ tmp_from) in
  (try Sys.remove tmp_to with _ -> ());
  if c <> 0 then Util.error ("Failed to call csdp certificate generator");
  let ch_from = open_in tmp_from in
  let cert = (input_value ch_from : csdpcert) in
  close_in ch_from; Sys.remove tmp_from;
  cert

let rec z_to_q_expr e = 
 match e with
  | Mc.PEc z   -> Mc.PEc {Mc.qnum = z ; Mc.qden = Mc.XH}
  | Mc.PEX x   -> Mc.PEX x
  | Mc.PEadd(e1,e2) -> Mc.PEadd(z_to_q_expr e1, z_to_q_expr e2)
  | Mc.PEsub(e1,e2) -> Mc.PEsub(z_to_q_expr e1, z_to_q_expr e2)
  | Mc.PEmul(e1,e2) -> Mc.PEmul(z_to_q_expr e1, z_to_q_expr e2)
  | Mc.PEopp(e) -> Mc.PEopp(z_to_q_expr e)
  | Mc.PEpow(e,n) -> Mc.PEpow(z_to_q_expr e,n)


let call_csdpcert_q provername poly = 
 match call_csdpcert provername poly with
  | None -> None
  | Some cert -> 
     let cert = Certificate.q_cert_of_pos cert in
      match Mc.qWeakChecker (CamlToCoq.list (fun x -> x) poly)  cert with
       | Mc.True -> Some cert
       | Mc.False ->  (print_string "buggy certificate" ; flush stdout) ;None


let call_csdpcert_z provername poly = 
 let l = List.map (fun (Mc.Pair(e,o)) -> (Mc.Pair(z_to_q_expr e,o))) poly in
  match call_csdpcert provername l with
   | None -> None
   | Some cert -> 
      let cert = Certificate.z_cert_of_pos cert in
       match Mc.zWeakChecker (CamlToCoq.list (fun x -> x) poly)  cert with
	| Mc.True -> Some cert
	| Mc.False ->  (print_string "buggy certificate" ; flush stdout) ;None




let psatzl_Z gl = 
 micromega_gen parse_zarith  Mc.negate Mc.normalise zz_domain_spec
  [lift_ratproof 
    (Certificate.linear_prover Certificate.z_spec), "fourier refutation" ] gl


let psatzl_Q gl = 
 micromega_gen  parse_qarith Mc.cnf_negate Mc.cnf_normalise qq_domain_spec 
  [ Certificate.linear_prover Certificate.q_spec, "fourier refutation" ]   gl

let psatz_Q i gl = 
 micromega_gen parse_qarith Mc.cnf_negate Mc.cnf_normalise qq_domain_spec
  [ call_csdpcert_q ("real_nonlinear_prover", Some i), "fourier refutation" ]  gl

let psatzl_R gl = 
 micromega_gen  parse_rarith Mc.cnf_negate Mc.cnf_normalise rz_domain_spec 
  [ Certificate.linear_prover Certificate.z_spec, "fourier refutation" ]   gl


let psatz_R i gl = 
 micromega_gen parse_rarith Mc.cnf_negate Mc.cnf_normalise rz_domain_spec
  [ call_csdpcert_z  ("real_nonlinear_prover", Some i), "fourier refutation" ]  gl

  
let psatz_Z i gl = 
 micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec 
 [lift_ratproof (call_csdpcert_z ("real_nonlinear_prover",Some i)), 
  "fourier refutation" ] gl


let sos_Z gl = 
 micromega_gen parse_zarith Mc.negate Mc.normalise  zz_domain_spec 
  [lift_ratproof (call_csdpcert_z ("pure_sos", None)), "pure sos refutation"]  gl

let sos_Q gl = 
 micromega_gen parse_qarith Mc.cnf_negate Mc.cnf_normalise  qq_domain_spec 
  [call_csdpcert_q ("pure_sos", None), "pure sos refutation"]  gl

let sos_R gl = 
 micromega_gen parse_rarith Mc.cnf_negate Mc.cnf_normalise  rz_domain_spec 
  [call_csdpcert_z ("pure_sos", None), "pure sos refutation"]  gl



let xlia gl = 
 micromega_gen parse_zarith Mc.negate Mc.normalise   zz_domain_spec 
  [Certificate.zlinear_prover, "zprover"] gl