1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
Require Import OrderedRing.
Require Import RingMicromega.
Require Import ZCoeff.
Require Import Refl.
Require Import ZArith.
Require Import List.
Require Import Bool.
Ltac flatten_bool :=
repeat match goal with
[ id : (_ && _)%bool = true |- _ ] => destruct (andb_prop _ _ id); clear id
| [ id : (_ || _)%bool = true |- _ ] => destruct (orb_prop _ _ id); clear id
end.
Require Import EnvRing.
Open Scope Z_scope.
Lemma Zsor : SOR 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt.
Proof.
constructor ; intros ; subst ; try (intuition (auto with zarith)).
apply Zsth.
apply Zth.
destruct (Ztrichotomy n m) ; intuition (auto with zarith).
apply Zmult_lt_0_compat ; auto.
Qed.
Lemma Zeq_bool_neq : forall x y, Zeq_bool x y = false -> x <> y.
Proof.
red ; intros.
subst.
unfold Zeq_bool in H.
rewrite Zcompare_refl in H.
discriminate.
Qed.
Lemma ZSORaddon :
SORaddon 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle (* ring elements *)
0%Z 1%Z Zplus Zmult Zminus Zopp (* coefficients *)
Zeq_bool Zle_bool
(fun x => x) (fun x => x) (pow_N 1 Zmult).
Proof.
constructor.
constructor ; intros ; try reflexivity.
apply Zeqb_ok ; auto.
constructor.
reflexivity.
intros x y.
apply Zeq_bool_neq ; auto.
apply Zle_bool_imp_le.
Qed.
(*Definition Zeval_expr := eval_pexpr 0 Zplus Zmult Zminus Zopp (fun x => x) (fun x => Z_of_N x) (Zpower).*)
Fixpoint Zeval_expr (env: PolEnv Z) (e: PExpr Z) : Z :=
match e with
| PEc c => c
| PEX j => env j
| PEadd pe1 pe2 => (Zeval_expr env pe1) + (Zeval_expr env pe2)
| PEsub pe1 pe2 => (Zeval_expr env pe1) - (Zeval_expr env pe2)
| PEmul pe1 pe2 => (Zeval_expr env pe1) * (Zeval_expr env pe2)
| PEopp pe1 => - (Zeval_expr env pe1)
| PEpow pe1 n => Zpower (Zeval_expr env pe1) (Z_of_N n)
end.
Lemma Zeval_expr_simpl : forall env e,
Zeval_expr env e =
match e with
| PEc c => c
| PEX j => env j
| PEadd pe1 pe2 => (Zeval_expr env pe1) + (Zeval_expr env pe2)
| PEsub pe1 pe2 => (Zeval_expr env pe1) - (Zeval_expr env pe2)
| PEmul pe1 pe2 => (Zeval_expr env pe1) * (Zeval_expr env pe2)
| PEopp pe1 => - (Zeval_expr env pe1)
| PEpow pe1 n => Zpower (Zeval_expr env pe1) (Z_of_N n)
end.
Proof.
destruct e ; reflexivity.
Qed.
Definition Zeval_expr' := eval_pexpr Zplus Zmult Zminus Zopp (fun x => x) (fun x => x) (pow_N 1 Zmult).
Lemma ZNpower : forall r n, r ^ Z_of_N n = pow_N 1 Zmult r n.
Proof.
destruct n.
reflexivity.
simpl.
unfold Zpower_pos.
replace (pow_pos Zmult r p) with (1 * (pow_pos Zmult r p)) by ring.
generalize 1.
induction p; simpl ; intros ; repeat rewrite IHp ; ring.
Qed.
Lemma Zeval_expr_compat : forall env e, Zeval_expr env e = Zeval_expr' env e.
Proof.
induction e ; simpl ; subst ; try congruence.
rewrite IHe.
apply ZNpower.
Qed.
Definition Zeval_op2 (o : Op2) : Z -> Z -> Prop :=
match o with
| OpEq => @eq Z
| OpNEq => fun x y => ~ x = y
| OpLe => Zle
| OpGe => Zge
| OpLt => Zlt
| OpGt => Zgt
end.
Definition Zeval_formula (e: PolEnv Z) (ff : Formula Z) :=
let (lhs,o,rhs) := ff in Zeval_op2 o (Zeval_expr e lhs) (Zeval_expr e rhs).
Definition Zeval_formula' :=
eval_formula Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt (fun x => x) (fun x => x) (pow_N 1 Zmult).
Lemma Zeval_formula_compat : forall env f, Zeval_formula env f <-> Zeval_formula' env f.
Proof.
intros.
unfold Zeval_formula.
destruct f.
repeat rewrite Zeval_expr_compat.
unfold Zeval_formula'.
unfold Zeval_expr'.
split ; destruct Fop ; simpl; auto with zarith.
Qed.
Definition Zeval_nformula :=
eval_nformula 0 Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt (fun x => x) (fun x => x) (pow_N 1 Zmult).
Definition Zeval_op1 (o : Op1) : Z -> Prop :=
match o with
| Equal => fun x : Z => x = 0
| NonEqual => fun x : Z => x <> 0
| Strict => fun x : Z => 0 < x
| NonStrict => fun x : Z => 0 <= x
end.
Lemma Zeval_nformula_simpl : forall env f, Zeval_nformula env f = (let (p, op) := f in Zeval_op1 op (Zeval_expr env p)).
Proof.
intros.
destruct f.
rewrite Zeval_expr_compat.
reflexivity.
Qed.
Lemma Zeval_nformula_dec : forall env d, (Zeval_nformula env d) \/ ~ (Zeval_nformula env d).
Proof.
exact (fun env d =>eval_nformula_dec Zsor (fun x => x) (fun x => x) (pow_N 1%Z Zmult) env d).
Qed.
Definition ZWitness := ConeMember Z.
Definition ZWeakChecker := check_normalised_formulas 0 1 Zplus Zmult Zminus Zopp Zeq_bool Zle_bool.
Lemma ZWeakChecker_sound : forall (l : list (NFormula Z)) (cm : ZWitness),
ZWeakChecker l cm = true ->
forall env, make_impl (Zeval_nformula env) l False.
Proof.
intros l cm H.
intro.
unfold Zeval_nformula.
apply (checker_nf_sound Zsor ZSORaddon l cm).
unfold ZWeakChecker in H.
exact H.
Qed.
Definition xnormalise (t:Formula Z) : list (NFormula Z) :=
let (lhs,o,rhs) := t in
match o with
| OpEq =>
((PEsub lhs (PEadd rhs (PEc 1))),NonStrict)::((PEsub rhs (PEadd lhs (PEc 1))),NonStrict)::nil
| OpNEq => (PEsub lhs rhs,Equal) :: nil
| OpGt => (PEsub rhs lhs,NonStrict) :: nil
| OpLt => (PEsub lhs rhs,NonStrict) :: nil
| OpGe => (PEsub rhs (PEadd lhs (PEc 1)),NonStrict) :: nil
| OpLe => (PEsub lhs (PEadd rhs (PEc 1)),NonStrict) :: nil
end.
Require Import Tauto.
Definition normalise (t:Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnormalise t).
Lemma normalise_correct : forall env t, eval_cnf (Zeval_nformula env) (normalise t) <-> Zeval_formula env t.
Proof.
unfold normalise, xnormalise ; simpl ; intros env t.
rewrite Zeval_formula_compat.
unfold eval_cnf.
destruct t as [lhs o rhs]; case_eq o ; simpl;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Qed.
Definition xnegate (t:RingMicromega.Formula Z) : list (NFormula Z) :=
let (lhs,o,rhs) := t in
match o with
| OpEq => (PEsub lhs rhs,Equal) :: nil
| OpNEq => ((PEsub lhs (PEadd rhs (PEc 1))),NonStrict)::((PEsub rhs (PEadd lhs (PEc 1))),NonStrict)::nil
| OpGt => (PEsub lhs (PEadd rhs (PEc 1)),NonStrict) :: nil
| OpLt => (PEsub rhs (PEadd lhs (PEc 1)),NonStrict) :: nil
| OpGe => (PEsub lhs rhs,NonStrict) :: nil
| OpLe => (PEsub rhs lhs,NonStrict) :: nil
end.
Definition negate (t:RingMicromega.Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnegate t).
Lemma negate_correct : forall env t, eval_cnf (Zeval_nformula env) (negate t) <-> ~ Zeval_formula env t.
Proof.
unfold negate, xnegate ; simpl ; intros env t.
rewrite Zeval_formula_compat.
unfold eval_cnf.
destruct t as [lhs o rhs]; case_eq o ; simpl ;
generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
(fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ;
intuition (auto with zarith).
Qed.
Definition ZweakTautoChecker (w: list ZWitness) (f : BFormula (Formula Z)) : bool :=
@tauto_checker (Formula Z) (NFormula Z) normalise negate ZWitness ZWeakChecker f w.
(* To get a complete checker, the proof format has to be enriched *)
Require Import Zdiv.
Open Scope Z_scope.
Definition ceiling (a b:Z) : Z :=
let (q,r) := Zdiv_eucl a b in
match r with
| Z0 => q
| _ => q + 1
end.
Lemma narrow_interval_lower_bound : forall a b x, a > 0 -> a * x >= b -> x >= ceiling b a.
Proof.
unfold ceiling.
intros.
generalize (Z_div_mod b a H).
destruct (Zdiv_eucl b a).
intros.
destruct H1.
destruct H2.
subst.
destruct (Ztrichotomy z0 0) as [ HH1 | [HH2 | HH3]]; destruct z0 ; try auto with zarith ; try discriminate.
assert (HH :x >= z \/ x < z) by (destruct (Ztrichotomy x z) ; auto with zarith).
destruct HH ;auto.
generalize (Zmult_lt_compat_l _ _ _ H3 H1).
auto with zarith.
clear H2.
assert (HH :x >= z +1 \/ x <= z) by (destruct (Ztrichotomy x z) ; intuition (auto with zarith)).
destruct HH ;auto.
assert (0 < a) by auto with zarith.
generalize (Zmult_lt_0_le_compat_r _ _ _ H2 H1).
intros.
rewrite Zmult_comm in H4.
rewrite (Zmult_comm z) in H4.
auto with zarith.
Qed.
Lemma narrow_interval_upper_bound : forall a b x, a > 0 -> a * x <= b -> x <= Zdiv b a.
Proof.
unfold Zdiv.
intros.
generalize (Z_div_mod b a H).
destruct (Zdiv_eucl b a).
intros.
destruct H1.
destruct H2.
subst.
assert (HH :x <= z \/ z <= x -1) by (destruct (Ztrichotomy x z) ; intuition (auto with zarith)).
destruct HH ;auto.
assert (0 < a) by auto with zarith.
generalize (Zmult_lt_0_le_compat_r _ _ _ H4 H1).
intros.
ring_simplify in H5.
rewrite Zmult_comm in H5.
auto with zarith.
Qed.
(* In this case, a certificate is made of a pair of inequations, in 1 variable,
that do not have an integer solution.
=> modify the fourier elimination
*)
Require Import QArith.
Inductive ProofTerm : Type :=
| RatProof : ZWitness -> ProofTerm
| CutProof : PExprC Z -> Q -> ZWitness -> ProofTerm -> ProofTerm
| EnumProof : Q -> PExprC Z -> Q -> ZWitness -> ZWitness -> list ProofTerm -> ProofTerm.
(* n/d <= x -> d*x - n >= 0 *)
Definition makeLb (v:PExpr Z) (q:Q) : NFormula Z :=
let (n,d) := q in (PEsub (PEmul (PEc (Zpos d)) v) (PEc n),NonStrict).
(* x <= n/d -> d * x <= d *)
Definition makeUb (v:PExpr Z) (q:Q) : NFormula Z :=
let (n,d) := q in
(PEsub (PEc n) (PEmul (PEc (Zpos d)) v), NonStrict).
Definition qceiling (q:Q) : Z :=
let (n,d) := q in ceiling n (Zpos d).
Definition qfloor (q:Q) : Z :=
let (n,d) := q in Zdiv n (Zpos d).
Definition makeLbCut (v:PExprC Z) (q:Q) : NFormula Z :=
(PEsub v (PEc (qceiling q)), NonStrict).
Definition neg_nformula (f : NFormula Z) :=
let (e,o) := f in
(PEopp (PEadd e (PEc 1%Z)), o).
Lemma neg_nformula_sound : forall env f, snd f = NonStrict ->( ~ (Zeval_nformula env (neg_nformula f)) <-> Zeval_nformula env f).
Proof.
unfold neg_nformula.
destruct f.
simpl.
intros ; subst ; simpl in *.
split; auto with zarith.
Qed.
Definition cutChecker (l:list (NFormula Z)) (e: PExpr Z) (lb:Q) (pf : ZWitness) : option (NFormula Z) :=
let (lb,lc) := (makeLb e lb,makeLbCut e lb) in
if ZWeakChecker (neg_nformula lb::l) pf then Some lc else None.
Fixpoint ZChecker (l:list (NFormula Z)) (pf : ProofTerm) {struct pf} : bool :=
match pf with
| RatProof pf => ZWeakChecker l pf
| CutProof e q pf rst =>
match cutChecker l e q pf with
| None => false
| Some c => ZChecker (c::l) rst
end
| EnumProof lb e ub pf1 pf2 rst =>
match cutChecker l e lb pf1 , cutChecker l (PEopp e) (Qopp ub) pf2 with
| None , _ | _ , None => false
| Some _ , Some _ => let (lb',ub') := (qceiling lb, Zopp (qceiling (- ub))) in
(fix label (pfs:list ProofTerm) :=
fun lb ub =>
match pfs with
| nil => if Z_gt_dec lb ub then true else false
| pf::rsr => andb (ZChecker ((PEsub e (PEc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub)
end)
rst lb' ub'
end
end.
Lemma ZChecker_simpl : forall (pf : ProofTerm) (l:list (NFormula Z)),
ZChecker l pf =
match pf with
| RatProof pf => ZWeakChecker l pf
| CutProof e q pf rst =>
match cutChecker l e q pf with
| None => false
| Some c => ZChecker (c::l) rst
end
| EnumProof lb e ub pf1 pf2 rst =>
match cutChecker l e lb pf1 , cutChecker l (PEopp e) (Qopp ub) pf2 with
| None , _ | _ , None => false
| Some _ , Some _ => let (lb',ub') := (qceiling lb, Zopp (qceiling (- ub))) in
(fix label (pfs:list ProofTerm) :=
fun lb ub =>
match pfs with
| nil => if Z_gt_dec lb ub then true else false
| pf::rsr => andb (ZChecker ((PEsub e (PEc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub)
end)
rst lb' ub'
end
end.
Proof.
destruct pf ; reflexivity.
Qed.
(*
Fixpoint depth (n:nat) : ProofTerm -> option nat :=
match n with
| O => fun pf => None
| S n =>
fun pf =>
match pf with
| RatProof _ => Some O
| CutProof _ _ _ p => option_map S (depth n p)
| EnumProof _ _ _ _ _ l =>
let f := fun pf x =>
match x , depth n pf with
| None , _ | _ , None => None
| Some n1 , Some n2 => Some (Max.max n1 n2)
end in
List.fold_right f (Some O) l
end
end.
*)
Fixpoint bdepth (pf : ProofTerm) : nat :=
match pf with
| RatProof _ => O
| CutProof _ _ _ p => S (bdepth p)
| EnumProof _ _ _ _ _ l => S (List.fold_right (fun pf x => Max.max (bdepth pf) x) O l)
end.
Require Import Wf_nat.
Lemma in_bdepth : forall l a b p c c0 y, In y l -> ltof ProofTerm bdepth y (EnumProof a b p c c0 l).
Proof.
induction l.
simpl.
tauto.
simpl.
intros.
destruct H.
subst.
unfold ltof.
simpl.
generalize ( (fold_right
(fun (pf : ProofTerm) (x : nat) => Max.max (bdepth pf) x) 0%nat l)).
intros.
generalize (bdepth y) ; intros.
generalize (Max.max_l n0 n) (Max.max_r n0 n).
omega.
generalize (IHl a0 b p c c0 y H).
unfold ltof.
simpl.
generalize ( (fold_right (fun (pf : ProofTerm) (x : nat) => Max.max (bdepth pf) x) 0%nat
l)).
intros.
generalize (Max.max_l (bdepth a) n) (Max.max_r (bdepth a) n).
omega.
Qed.
Lemma lb_lbcut : forall env e q, Zeval_nformula env (makeLb e q) -> Zeval_nformula env (makeLbCut e q).
Proof.
unfold makeLb, makeLbCut.
destruct q.
rewrite Zeval_nformula_simpl.
rewrite Zeval_nformula_simpl.
unfold Zeval_op1.
rewrite Zeval_expr_simpl.
rewrite Zeval_expr_simpl.
rewrite Zeval_expr_simpl.
intro.
rewrite Zeval_expr_simpl.
revert H.
generalize (Zeval_expr env e).
rewrite Zeval_expr_simpl.
rewrite Zeval_expr_simpl.
unfold qceiling.
intros.
assert ( z >= ceiling Qnum (' Qden))%Z.
apply narrow_interval_lower_bound.
compute.
reflexivity.
destruct z ; auto with zarith.
auto with zarith.
Qed.
Lemma cutChecker_sound : forall e lb pf l res, cutChecker l e lb pf = Some res ->
forall env, make_impl (Zeval_nformula env) l (Zeval_nformula env res).
Proof.
unfold cutChecker.
intros.
revert H.
case_eq (ZWeakChecker (neg_nformula (makeLb e lb) :: l) pf); intros ; [idtac | discriminate].
generalize (ZWeakChecker_sound _ _ H env).
intros.
inversion H0 ; subst ; clear H0.
apply -> make_conj_impl.
simpl in H1.
rewrite <- make_conj_impl in H1.
intros.
apply -> neg_nformula_sound ; auto.
red ; intros.
apply H1 ; auto.
clear H H1 H0.
generalize (lb_lbcut env e lb).
intros.
destruct (Zeval_nformula_dec env ((neg_nformula (makeLb e lb)))).
auto.
rewrite -> neg_nformula_sound in H0.
assert (HH := H H0).
rewrite <- neg_nformula_sound in HH.
tauto.
reflexivity.
unfold makeLb.
destruct lb.
reflexivity.
Qed.
Lemma cutChecker_sound_bound : forall e lb pf l res, cutChecker l e lb pf = Some res ->
forall env, make_conj (Zeval_nformula env) l -> (Zeval_expr env e >= qceiling lb)%Z.
Proof.
intros.
generalize (cutChecker_sound _ _ _ _ _ H env).
intros.
rewrite <- (make_conj_impl) in H1.
generalize (H1 H0).
unfold cutChecker in H.
destruct (ZWeakChecker (neg_nformula (makeLb e lb) :: l) pf).
unfold makeLbCut in H.
inversion H ; subst.
clear H.
simpl.
rewrite Zeval_expr_compat.
unfold Zeval_expr'.
auto with zarith.
discriminate.
Qed.
Lemma ZChecker_sound : forall w l, ZChecker l w = true -> forall env, make_impl (Zeval_nformula env) l False.
Proof.
induction w using (well_founded_ind (well_founded_ltof _ bdepth)).
destruct w.
(* RatProof *)
simpl.
intros.
eapply ZWeakChecker_sound.
apply H0.
(* CutProof *)
simpl.
intro.
case_eq (cutChecker l p q z) ; intros.
generalize (cutChecker_sound _ _ _ _ _ H0 env).
intro.
assert (make_impl (Zeval_nformula env) (n::l) False).
eapply (H w) ; auto.
unfold ltof.
simpl.
auto with arith.
simpl in H3.
rewrite <- make_conj_impl in H2.
rewrite <- make_conj_impl in H3.
rewrite <- make_conj_impl.
tauto.
discriminate.
(* EnumProof *)
intro.
rewrite ZChecker_simpl.
case_eq (cutChecker l0 p q z).
rename q into llb.
case_eq (cutChecker l0 (PEopp p) (- q0) z0).
intros.
rename q0 into uub.
(* get the bounds of the enum *)
rewrite <- make_conj_impl.
intro.
assert (qceiling llb <= Zeval_expr env p <= - qceiling ( - uub))%Z.
generalize (cutChecker_sound_bound _ _ _ _ _ H0 env H3).
generalize (cutChecker_sound_bound _ _ _ _ _ H1 env H3).
intros.
rewrite Zeval_expr_simpl in H5.
auto with zarith.
clear H0 H1.
revert H2 H3 H4.
generalize (qceiling llb) (- qceiling (- uub))%Z.
set (FF := (fix label (pfs : list ProofTerm) (lb ub : Z) {struct pfs} : bool :=
match pfs with
| nil => if Z_gt_dec lb ub then true else false
| pf :: rsr =>
(ZChecker ((PEsub p (PEc lb), Equal) :: l0) pf &&
label rsr (lb + 1)%Z ub)%bool
end)).
intros z1 z2.
intros.
assert (forall x, z1 <= x <= z2 -> exists pr,
(In pr l /\
ZChecker ((PEsub p (PEc x),Equal) :: l0) pr = true))%Z.
clear H.
revert H2.
clear H4.
revert z1 z2.
induction l;simpl ;intros.
destruct (Z_gt_dec z1 z2).
intros.
apply False_ind ; omega.
discriminate.
intros.
simpl in H2.
flatten_bool.
assert (HH:(x = z1 \/ z1 +1 <=x)%Z) by omega.
destruct HH.
subst.
exists a ; auto.
assert (z1 + 1 <= x <= z2)%Z by omega.
destruct (IHl _ _ H1 _ H4).
destruct H5.
exists x0 ; split;auto.
(*/asser *)
destruct (H0 _ H4) as [pr [Hin Hcheker]].
assert (make_impl (Zeval_nformula env) ((PEsub p (PEc (Zeval_expr env p)),Equal) :: l0) False).
apply (H pr);auto.
apply in_bdepth ; auto.
rewrite <- make_conj_impl in H1.
apply H1.
rewrite make_conj_cons.
split ;auto.
rewrite Zeval_nformula_simpl;
unfold Zeval_op1;
rewrite Zeval_expr_simpl.
generalize (Zeval_expr env p).
intros.
rewrite Zeval_expr_simpl.
auto with zarith.
intros ; discriminate.
intros ; discriminate.
Qed.
Definition ZTautoChecker (f : BFormula (Formula Z)) (w: list ProofTerm): bool :=
@tauto_checker (Formula Z) (NFormula Z) normalise negate ProofTerm ZChecker f w.
Lemma ZTautoChecker_sound : forall f w, ZTautoChecker f w = true -> forall env, eval_f (Zeval_formula env) f.
Proof.
intros f w.
unfold ZTautoChecker.
apply (tauto_checker_sound Zeval_formula Zeval_nformula).
apply Zeval_nformula_dec.
intros env t.
rewrite normalise_correct ; auto.
intros env t.
rewrite negate_correct ; auto.
intros t w0.
apply ZChecker_sound.
Qed.
Open Scope Z_scope.
Fixpoint map_cone (f: nat -> nat) (e:ZWitness) : ZWitness :=
match e with
| S_In n => S_In _ (f n)
| S_Ideal e cm => S_Ideal e (map_cone f cm)
| S_Square _ => e
| S_Monoid l => S_Monoid _ (List.map f l)
| S_Mult cm1 cm2 => S_Mult (map_cone f cm1) (map_cone f cm2)
| S_Add cm1 cm2 => S_Add (map_cone f cm1) (map_cone f cm2)
| _ => e
end.
Fixpoint indexes (e:ZWitness) : list nat :=
match e with
| S_In n => n::nil
| S_Ideal e cm => indexes cm
| S_Square e => nil
| S_Monoid l => l
| S_Mult cm1 cm2 => (indexes cm1)++ (indexes cm2)
| S_Add cm1 cm2 => (indexes cm1)++ (indexes cm2)
| _ => nil
end.
(** To ease bindings from ml code **)
(*Definition varmap := Quote.varmap.*)
Definition make_impl := Refl.make_impl.
Definition make_conj := Refl.make_conj.
Require VarMap.
(*Definition varmap_type := VarMap.t Z. *)
Definition env := PolEnv Z.
Definition node := @VarMap.Node Z.
Definition empty := @VarMap.Empty Z.
Definition leaf := @VarMap.Leaf Z.
Definition coneMember := ZWitness.
Definition eval := Zeval_formula.
Definition prod_pos_nat := prod positive nat.
Require Import Int.
Definition n_of_Z (z:Z) : BinNat.N :=
match z with
| Z0 => N0
| Zpos p => Npos p
| Zneg p => N0
end.
|