1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
Require Import ZArith.
Require Import Coq.Arith.Max.
Require Import List.
Set Implicit Arguments.
(* I have addded a Leaf constructor to the varmap data structure (/contrib/ring/Quote.v)
-- this is harmless and spares a lot of Empty.
This means smaller proof-terms.
BTW, by dropping the polymorphism, I get small (yet noticeable) speed-up.
*)
Section MakeVarMap.
Variable A : Type.
Variable default : A.
Inductive t : Type :=
| Empty : t
| Leaf : A -> t
| Node : t -> A -> t -> t .
Fixpoint find (vm : t ) (p:positive) {struct vm} : A :=
match vm with
| Empty => default
| Leaf i => i
| Node l e r => match p with
| xH => e
| xO p => find l p
| xI p => find r p
end
end.
(* an off_map (a map with offset) offers the same functionalites as /contrib/setoid_ring/BinList.v - it is used in EnvRing.v *)
(*
Definition off_map := (option positive *t )%type.
Definition jump (j:positive) (l:off_map ) :=
let (o,m) := l in
match o with
| None => (Some j,m)
| Some j0 => (Some (j+j0)%positive,m)
end.
Definition nth (n:positive) (l: off_map ) :=
let (o,m) := l in
let idx := match o with
| None => n
| Some i => i + n
end%positive in
find idx m.
Definition hd (l:off_map) := nth xH l.
Definition tail (l:off_map ) := jump xH l.
Lemma psucc : forall p, (match p with
| xI y' => xO (Psucc y')
| xO y' => xI y'
| 1%positive => 2%positive
end) = (p+1)%positive.
Proof.
destruct p.
auto with zarith.
rewrite xI_succ_xO.
auto with zarith.
reflexivity.
Qed.
Lemma jump_Pplus : forall i j l,
(jump (i + j) l) = (jump i (jump j l)).
Proof.
unfold jump.
destruct l.
destruct o.
rewrite Pplus_assoc.
reflexivity.
reflexivity.
Qed.
Lemma jump_simpl : forall p l,
jump p l =
match p with
| xH => tail l
| xO p => jump p (jump p l)
| xI p => jump p (jump p (tail l))
end.
Proof.
destruct p ; unfold tail ; intros ; repeat rewrite <- jump_Pplus.
(* xI p = p + p + 1 *)
rewrite xI_succ_xO.
rewrite Pplus_diag.
rewrite <- Pplus_one_succ_r.
reflexivity.
(* xO p = p + p *)
rewrite Pplus_diag.
reflexivity.
reflexivity.
Qed.
Ltac jump_s :=
repeat
match goal with
| |- context [jump xH ?e] => rewrite (jump_simpl xH)
| |- context [jump (xO ?p) ?e] => rewrite (jump_simpl (xO p))
| |- context [jump (xI ?p) ?e] => rewrite (jump_simpl (xI p))
end.
Lemma jump_tl : forall j l, tail (jump j l) = jump j (tail l).
Proof.
unfold tail.
intros.
repeat rewrite <- jump_Pplus.
rewrite Pplus_comm.
reflexivity.
Qed.
Lemma jump_Psucc : forall j l,
(jump (Psucc j) l) = (jump 1 (jump j l)).
Proof.
intros.
rewrite <- jump_Pplus.
rewrite Pplus_one_succ_r.
rewrite Pplus_comm.
reflexivity.
Qed.
Lemma jump_Pdouble_minus_one : forall i l,
(jump (Pdouble_minus_one i) (tail l)) = (jump i (jump i l)).
Proof.
unfold tail.
intros.
repeat rewrite <- jump_Pplus.
rewrite <- Pplus_one_succ_r.
rewrite Psucc_o_double_minus_one_eq_xO.
rewrite Pplus_diag.
reflexivity.
Qed.
Lemma jump_x0_tail : forall p l, jump (xO p) (tail l) = jump (xI p) l.
Proof.
intros.
jump_s.
repeat rewrite <- jump_Pplus.
reflexivity.
Qed.
Lemma nth_spec : forall p l,
nth p l =
match p with
| xH => hd l
| xO p => nth p (jump p l)
| xI p => nth p (jump p (tail l))
end.
Proof.
unfold nth.
destruct l.
destruct o.
simpl.
rewrite psucc.
destruct p.
replace (p0 + xI p)%positive with ((p + (p0 + 1) + p))%positive.
reflexivity.
rewrite xI_succ_xO.
rewrite Pplus_one_succ_r.
rewrite <- Pplus_diag.
rewrite Pplus_comm.
symmetry.
rewrite (Pplus_comm p0).
rewrite <- Pplus_assoc.
rewrite (Pplus_comm 1)%positive.
rewrite <- Pplus_assoc.
reflexivity.
(**)
replace ((p0 + xO p))%positive with (p + p0 + p)%positive.
reflexivity.
rewrite <- Pplus_diag.
rewrite <- Pplus_assoc.
rewrite Pplus_comm.
rewrite Pplus_assoc.
reflexivity.
reflexivity.
simpl.
destruct p.
rewrite xI_succ_xO.
rewrite Pplus_one_succ_r.
rewrite <- Pplus_diag.
symmetry.
rewrite Pplus_comm.
rewrite Pplus_assoc.
reflexivity.
rewrite Pplus_diag.
reflexivity.
reflexivity.
Qed.
Lemma nth_jump : forall p l, nth p (tail l) = hd (jump p l).
Proof.
destruct l.
unfold tail.
unfold hd.
unfold jump.
unfold nth.
destruct o.
symmetry.
rewrite Pplus_comm.
rewrite <- Pplus_assoc.
rewrite (Pplus_comm p0).
reflexivity.
rewrite Pplus_comm.
reflexivity.
Qed.
Lemma nth_Pdouble_minus_one :
forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l).
Proof.
destruct l.
unfold tail.
unfold nth, jump.
destruct o.
rewrite ((Pplus_comm p)).
rewrite <- (Pplus_assoc p0).
rewrite Pplus_diag.
rewrite <- Psucc_o_double_minus_one_eq_xO.
rewrite Pplus_one_succ_r.
rewrite (Pplus_comm (Pdouble_minus_one p)).
rewrite Pplus_assoc.
rewrite (Pplus_comm p0).
reflexivity.
rewrite <- Pplus_one_succ_l.
rewrite Psucc_o_double_minus_one_eq_xO.
rewrite Pplus_diag.
reflexivity.
Qed.
*)
End MakeVarMap.
|