1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
|
(*i camlp4deps: "parsing/grammar.cma" i*)
open Jlogic
module JA = Jall
module JT = Jterm
module T = Tactics
module TCL = Tacticals
module TM = Tacmach
module N = Names
module PT = Proof_type
module HT = Hiddentac
module PA = Pattern
module HP = Hipattern
module TR = Term
module PR = Printer
module RO = Reductionops
module UT = Util
module RA = Rawterm
module J=JA.JProver(JLogic) (* the JProver *)
(*i
module NO = Nameops
module TO = Termops
module RE = Reduction
module CL = Coqlib
module ID = Inductiveops
module CV = Clenv
module RF = Refiner
i*)
(* Interface to JProver: *)
(* type JLogic.inf_step = rule * (string * Jterm.term) * (string * Jterm.term) *)
type jp_inf_step = JLogic.inf_step
type jp_inference = JLogic.inference (* simply a list of [inf_step] *)
(* Definitions for rebuilding proof tree from JProver: *)
(* leaf, one-branch, two-branch, two-branch, true, false *)
type jpbranch = JP0 | JP1 | JP2 | JP2' | JPT | JPF
type jptree = | JPempty (* empty tree *)
| JPAx of jp_inf_step (* Axiom node *)
| JPA of jp_inf_step * jptree
| JPB of jp_inf_step * jptree * jptree
(* Private debugging tools: *)
(*i*)
let mbreak s = Format.print_flush (); print_string ("-break at: "^s);
Format.print_flush (); let _ = input_char stdin in ()
(*i*)
let jp_error re = raise (JT.RefineError ("jprover", JT.StringError re))
(* print Coq constructor *)
let print_constr ct = Pp.ppnl (PR.pr_lconstr ct); Format.print_flush ()
let rec print_constr_list = function
| [] -> ()
| ct::r -> print_constr ct; print_constr_list r
let print_constr_pair op c1 c2 =
print_string (op^"(");
print_constr c1;
print_string ",";
print_constr c2;
print_string ")\n"
(* Parsing modules for Coq: *)
(* [is_coq_???] : testing functions *)
(* [dest_coq_???] : destructors *)
let is_coq_true ct = (HP.is_unit_type ct) && not (HP.is_equation ct)
let is_coq_false = HP.is_empty_type
(* return two subterms *)
let dest_coq_and ct =
match (HP.match_with_conjunction ct) with
| Some (hdapp,args) ->
(*i print_constr hdapp; print_constr_list args; i*)
begin
match args with
| s1::s2::[] ->
(*i print_constr_pair "and" s1 s2; i*)
(s1,s2)
| _ -> jp_error "dest_coq_and"
end
| None -> jp_error "dest_coq_and"
let is_coq_or = HP.is_disjunction
(* return two subterms *)
let dest_coq_or ct =
match (HP.match_with_disjunction ct) with
| Some (hdapp,args) ->
(*i print_constr hdapp; print_constr_list args; i*)
begin
match args with
| s1::s2::[] ->
(*i print_constr_pair "or" s1 s2; i*)
(s1,s2)
| _ -> jp_error "dest_coq_or"
end
| None -> jp_error "dest_coq_or"
let is_coq_not = HP.is_nottype
let dest_coq_not ct =
match (HP.match_with_nottype ct) with
| Some (hdapp,arg) ->
(*i print_constr hdapp; print_constr args; i*)
(*i print_string "not ";
print_constr arg; i*)
arg
| None -> jp_error "dest_coq_not"
let is_coq_impl ct =
match TR.kind_of_term ct with
| TR.Prod (_,_,b) -> (not (Termops.dependent (TR.mkRel 1) b))
| _ -> false
let dest_coq_impl c =
match TR.kind_of_term c with
| TR.Prod (_,b,c) ->
(*i print_constr_pair "impl" b c; i*)
(b, c)
| _ -> jp_error "dest_coq_impl"
(* provide new variables for renaming of universal variables *)
let new_counter =
let ctr = ref 0 in
fun () -> incr ctr;!ctr
(* provide new symbol name for unknown Coq constructors *)
let new_ecounter =
let ectr = ref 0 in
fun () -> incr ectr;!ectr
(* provide new variables for address naming *)
let new_acounter =
let actr = ref 0 in
fun () -> incr actr;!actr
let is_coq_forall ct =
match TR.kind_of_term (RO.whd_betaiota ct) with
| TR.Prod (_,_,b) -> Termops.dependent (TR.mkRel 1) b
| _ -> false
(* return the bounded variable (as a string) and the bounded term *)
let dest_coq_forall ct =
match TR.kind_of_term (RO.whd_betaiota ct) with
| TR.Prod (_,_,b) ->
let x ="jp_"^(string_of_int (new_counter())) in
let v = TR.mkVar (N.id_of_string x) in
let c = TR.subst1 v b in (* substitute de Bruijn variable by [v] *)
(*i print_constr_pair "forall" v c; i*)
(x, c)
| _ -> jp_error "dest_coq_forall"
(* Apply [ct] to [t]: *)
let sAPP ct t =
match TR.kind_of_term (RO.whd_betaiota ct) with
| TR.Prod (_,_,b) ->
let c = TR.subst1 t b in
c
| _ -> jp_error "sAPP"
let is_coq_exists ct =
if not (HP.is_conjunction ct) then false
else let (hdapp,args) = TR.decompose_app ct in
match args with
| _::la::[] ->
begin
try
match TR.destLambda la with
| (N.Name _,_,_) -> true
| _ -> false
with _ -> false
end
| _ -> false
(* return the bounded variable (as a string) and the bounded term *)
let dest_coq_exists ct =
let (hdapp,args) = TR.decompose_app ct in
match args with
| _::la::[] ->
begin
try
match TR.destLambda la with
| (N.Name x,t1,t2) ->
let v = TR.mkVar x in
let t3 = TR.subst1 v t2 in
(*i print_constr_pair "exists" v t3; i*)
(N.string_of_id x, t3)
| _ -> jp_error "dest_coq_exists"
with _ -> jp_error "dest_coq_exists"
end
| _ -> jp_error "dest_coq_exists"
let is_coq_and ct =
if (HP.is_conjunction ct) && not (is_coq_exists ct)
&& not (is_coq_true ct) then true
else false
(* Parsing modules: *)
let jtbl = Hashtbl.create 53 (* associate for unknown Coq constr. *)
let rtbl = Hashtbl.create 53 (* reverse table of [jtbl] *)
let dest_coq_symb ct =
N.string_of_id (TR.destVar ct)
(* provide new names for unknown Coq constr. *)
(* [ct] is the unknown constr., string [s] is appended to the name encoding *)
let create_coq_name ct s =
try
Hashtbl.find jtbl ct
with Not_found ->
let t = ("jp_"^s^(string_of_int (new_ecounter()))) in
Hashtbl.add jtbl ct t;
Hashtbl.add rtbl t ct;
t
let dest_coq_app ct s =
let (hd, args) = TR.decompose_app ct in
(*i print_constr hd;
print_constr_list args; i*)
if TR.isVar hd then
(dest_coq_symb hd, args)
else (* unknown constr *)
(create_coq_name hd s, args)
let rec parsing2 c = (* for function symbols, variables, constants *)
if (TR.isApp c) then (* function symbol? *)
let (f,args) = dest_coq_app c "fun_" in
JT.fun_ f (List.map parsing2 args)
else if TR.isVar c then (* identifiable variable or constant *)
JT.var_ (dest_coq_symb c)
else (* unknown constr *)
JT.var_ (create_coq_name c "var_")
(* the main parsing function *)
let rec parsing c =
let ct = Reduction.whd_betadeltaiota (Global.env ()) c in
(* let ct = Reduction.whd_betaiotazeta (Global.env ()) c in *)
if is_coq_true ct then
JT.true_
else if is_coq_false ct then
JT.false_
else if is_coq_not ct then
JT.not_ (parsing (dest_coq_not ct))
else if is_coq_impl ct then
let (t1,t2) = dest_coq_impl ct in
JT.imp_ (parsing t1) (parsing t2)
else if is_coq_or ct then
let (t1,t2) = dest_coq_or ct in
JT.or_ (parsing t1) (parsing t2)
else if is_coq_and ct then
let (t1,t2) = dest_coq_and ct in
JT.and_ (parsing t1) (parsing t2)
else if is_coq_forall ct then
let (v,t) = dest_coq_forall ct in
JT.forall v (parsing t)
else if is_coq_exists ct then
let (v,t) = dest_coq_exists ct in
JT.exists v (parsing t)
else if TR.isApp ct then (* predicate symbol with arguments *)
let (p,args) = dest_coq_app ct "P_" in
JT.pred_ p (List.map parsing2 args)
else if TR.isVar ct then (* predicate symbol without arguments *)
let p = dest_coq_symb ct in
JT.pred_ p []
else (* unknown predicate *)
JT.pred_ (create_coq_name ct "Q_") []
(*i
print_string "??";print_constr ct;
JT.const_ ("err_"^(string_of_int (new_ecounter())))
i*)
(* Translate JProver terms into Coq constructors: *)
(* The idea is to retrieve it from [rtbl] if it exists indeed, otherwise
create one. *)
let rec constr_of_jterm t =
if (JT.is_var_term t) then (* a variable *)
let v = JT.dest_var t in
try
Hashtbl.find rtbl v
with Not_found -> TR.mkVar (N.id_of_string v)
else if (JT.is_fun_term t) then (* a function symbol *)
let (f,ts) = JT.dest_fun t in
let f' = try Hashtbl.find rtbl f with Not_found -> TR.mkVar (N.id_of_string f) in
TR.mkApp (f', Array.of_list (List.map constr_of_jterm ts))
else jp_error "constr_of_jterm"
(* Coq tactics for Sequent Calculus LJ: *)
(* Note that for left-rule a name indicating the being applied rule
in Coq's Hints is required; for right-rule a name is also needed
if it will pass some subterm to the left-hand side.
However, all of these can be computed by the path [id] of the being
applied rule.
*)
let assoc_addr = Hashtbl.create 97
let short_addr s =
let ad =
try
Hashtbl.find assoc_addr s
with Not_found ->
let t = ("jp_H"^(string_of_int (new_acounter()))) in
Hashtbl.add assoc_addr s t;
t
in
N.id_of_string ad
(* and-right *)
let dyn_andr =
T.split RA.NoBindings
(* For example, the following implements the [and-left] rule: *)
let dyn_andl id = (* [id1]: left child; [id2]: right child *)
let id1 = (short_addr (id^"_1")) and id2 = (short_addr (id^"_2")) in
(TCL.tclTHEN (T.simplest_elim (TR.mkVar (short_addr id))) (T.intros_using [id1;id2]))
let dyn_orr1 =
T.left RA.NoBindings
let dyn_orr2 =
T.right RA.NoBindings
let dyn_orl id =
let id1 = (short_addr (id^"_1")) and id2 = (short_addr (id^"_2")) in
(TCL.tclTHENS (T.simplest_elim (TR.mkVar (short_addr id)))
[T.intro_using id1; T.intro_using id2])
let dyn_negr id =
let id1 = id^"_1_1" in
HT.h_intro (short_addr id1)
let dyn_negl id =
T.simplest_elim (TR.mkVar (short_addr id))
let dyn_impr id =
let id1 = id^"_1_1" in
HT.h_intro (short_addr id1)
let dyn_impl id gl =
let t = TM.pf_get_hyp_typ gl (short_addr id) in
let ct = Reduction.whd_betadeltaiota (Global.env ()) t in (* unfolding *)
let (_,b) = dest_coq_impl ct in
let id2 = (short_addr (id^"_1_2")) in
(TCL.tclTHENLAST
(TCL.tclTHENS (T.cut b) [T.intro_using id2;TCL.tclIDTAC])
(T.apply_term (TR.mkVar (short_addr id))
[TR.mkMeta (Evarutil.new_meta())])) gl
let dyn_allr c = (* [c] must be an eigenvariable which replaces [v] *)
HT.h_intro (N.id_of_string c)
(* [id2] is the path of the instantiated term for [id]*)
let dyn_alll id id2 t gl =
let id' = short_addr id in
let id2' = short_addr id2 in
let ct = TM.pf_get_hyp_typ gl id' in
let ct' = Reduction.whd_betadeltaiota (Global.env ()) ct in (* unfolding *)
let ta = sAPP ct' t in
TCL.tclTHENS (T.cut ta) [T.intro_using id2'; T.apply (TR.mkVar id')] gl
let dyn_exl id id2 c = (* [c] must be an eigenvariable *)
(TCL.tclTHEN (T.simplest_elim (TR.mkVar (short_addr id)))
(T.intros_using [(N.id_of_string c);(short_addr id2)]))
let dyn_exr t =
T.one_constructor 1 (RA.ImplicitBindings [t])
let dyn_falsel = dyn_negl
let dyn_truer =
T.one_constructor 1 RA.NoBindings
(* Do the proof by the guidance of JProver. *)
let do_one_step inf =
let (rule, (s1, t1), (s2, t2)) = inf in
begin
(*i if not (Jterm.is_xnil_term t2) then
begin
print_string "1: "; JT.print_term stdout t2; print_string "\n";
print_string "2: "; print_constr (constr_of_jterm t2); print_string "\n";
end;
i*)
match rule with
| Andl -> dyn_andl s1
| Andr -> dyn_andr
| Orl -> dyn_orl s1
| Orr1 -> dyn_orr1
| Orr2 -> dyn_orr2
| Impr -> dyn_impr s1
| Impl -> dyn_impl s1
| Negr -> dyn_negr s1
| Negl -> dyn_negl s1
| Allr -> dyn_allr (JT.dest_var t2)
| Alll -> dyn_alll s1 s2 (constr_of_jterm t2)
| Exr -> dyn_exr (Tactics.inj_open (constr_of_jterm t2))
| Exl -> dyn_exl s1 s2 (JT.dest_var t2)
| Ax -> T.assumption (*i TCL.tclIDTAC i*)
| Truer -> dyn_truer
| Falsel -> dyn_falsel s1
| _ -> jp_error "do_one_step"
(* this is impossible *)
end
;;
(* Parameter [tr] is the reconstucted proof tree from output of JProver. *)
let do_coq_proof tr =
let rec rec_do trs =
match trs with
| JPempty -> TCL.tclIDTAC
| JPAx h -> do_one_step h
| JPA (h, t) -> TCL.tclTHEN (do_one_step h) (rec_do t)
| JPB (h, left, right) -> TCL.tclTHENS (do_one_step h) [rec_do left; rec_do right]
in
rec_do tr
(* Rebuild the proof tree from the output of JProver: *)
(* Since some universal variables are not necessarily first-order,
lazy substitution may happen. They are recorded in [rtbl]. *)
let reg_unif_subst t1 t2 =
let (v,_,_) = JT.dest_all t1 in
Hashtbl.add rtbl v (TR.mkVar (N.id_of_string (JT.dest_var t2)))
let count_jpbranch one_inf =
let (rule, (_, t1), (_, t2)) = one_inf in
begin
match rule with
| Ax -> JP0
| Orr1 | Orr2 | Negl | Impr | Alll | Exr | Exl -> JP1
| Andr | Orl -> JP2
| Negr -> if (JT.is_true_term t1) then JPT else JP1
| Andl -> if (JT.is_false_term t1) then JPF else JP1
| Impl -> JP2' (* reverse the sons of [Impl] since [dyn_impl] reverses them *)
| Allr -> reg_unif_subst t1 t2; JP1
| _ -> jp_error "count_jpbranch"
end
let replace_by r = function
(rule, a, b) -> (r, a, b)
let rec build_jptree inf =
match inf with
| [] -> ([], JPempty)
| h::r ->
begin
match count_jpbranch h with
| JP0 -> (r,JPAx h)
| JP1 -> let (r1,left) = build_jptree r in
(r1, JPA(h, left))
| JP2 -> let (r1,left) = build_jptree r in
let (r2,right) = build_jptree r1 in
(r2, JPB(h, left, right))
| JP2' -> let (r1,left) = build_jptree r in (* for [Impl] *)
let (r2,right) = build_jptree r1 in
(r2, JPB(h, right, left))
| JPT -> let (r1,left) = build_jptree r in (* right True *)
(r1, JPAx (replace_by Truer h))
| JPF -> let (r1,left) = build_jptree r in (* left False *)
(r1, JPAx (replace_by Falsel h))
end
(* The main function: *)
(* [limits] is the multiplicity limit. *)
let jp limits gls =
let concl = TM.pf_concl gls in
let ct = concl in
(*i print_constr ct; i*)
Hashtbl.clear jtbl; (* empty the hash tables *)
Hashtbl.clear rtbl;
Hashtbl.clear assoc_addr;
let t = parsing ct in
(*i JT.print_term stdout t; i*)
try
let p = (J.prover limits [] t) in
(*i print_string "\n";
JLogic.print_inf p; i*)
let (il,tr) = build_jptree p in
if (il = []) then
begin
Pp.msgnl (Pp.str "Proof is built.");
do_coq_proof tr gls
end
else UT.error "Cannot reconstruct proof tree from JProver."
with e -> Pp.msgnl (Pp.str "JProver fails to prove this:");
JT.print_error_msg e;
UT.error "JProver terminated."
(* an unfailed generalization procedure *)
let non_dep_gen b gls =
let concl = TM.pf_concl gls in
if (not (Termops.dependent b concl)) then
T.generalize [b] gls
else
TCL.tclIDTAC gls
let rec unfail_gen = function
| [] -> TCL.tclIDTAC
| h::r ->
TCL.tclTHEN
(TCL.tclORELSE (non_dep_gen h) (TCL.tclIDTAC))
(unfail_gen r)
(*
(* no argument, which stands for no multiplicity limit *)
let jp gls =
let ls = List.map (fst) (TM.pf_hyps_types gls) in
(*i T.generalize (List.map TR.mkVar ls) gls i*)
(* generalize the context *)
TCL.tclTHEN (TCL.tclTRY T.red_in_concl)
(TCL.tclTHEN (unfail_gen (List.map TR.mkVar ls))
(jp None)) gls
*)
(*
let dyn_jp l gls =
assert (l = []);
jp
*)
(* one optional integer argument for the multiplicity *)
let jpn n gls =
let ls = List.map (fst) (TM.pf_hyps_types gls) in
TCL.tclTHEN (TCL.tclTRY T.red_in_concl)
(TCL.tclTHEN (unfail_gen (List.map TR.mkVar ls))
(jp n)) gls
TACTIC EXTEND jprover
[ "jp" natural_opt(n) ] -> [ jpn n ]
END
(*
TACTIC EXTEND Andl
[ "Andl" ident(id)] -> [ ... (Andl id) ... ].
END
*)
|