1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
|
(** Translation from coq abstract syntax trees to centaur vernac
*)
open String;;
open Char;;
open Util;;
open Names;;
open Ascent;;
open Genarg;;
open Rawterm;;
open Tacexpr;;
open Vernacexpr;;
open Decl_kinds;;
open Topconstr;;
open Libnames;;
open Goptions;;
(* // Verify whether this is dead code, as of coq version 7 *)
(* The following three sentences have been added to cope with a change
of strategy from the Coq team in the way rules construct ast's. The
problem is that now grammar rules will refer to identifiers by giving
their absolute name, using the mutconstruct when needed. Unfortunately,
when you have a mutconstruct structure, you don't have a way to guess
the corresponding identifier without an environment, and the parser
does not have an environment. We add one, only for the constructs
that are always loaded. *)
let type_table = ((Hashtbl.create 17) :
(string, ((string array) array)) Hashtbl.t);;
Hashtbl.add type_table "Coq.Init.Logic.and"
[|[|"dummy";"conj"|]|];;
Hashtbl.add type_table "Coq.Init.Datatypes.prod"
[|[|"dummy";"pair"|]|];;
Hashtbl.add type_table "Coq.Init.Datatypes.nat"
[|[|"";"O"; "S"|]|];;
Hashtbl.add type_table "Coq.ZArith.fast_integer.Z"
[|[|"";"ZERO";"POS";"NEG"|]|];;
Hashtbl.add type_table "Coq.ZArith.fast_integer.positive"
[|[|"";"xI";"xO";"xH"|]|];;
(*The following two codes are added to cope with the distinction
between ocaml and caml-light syntax while using ctcaml to
manipulate the program *)
let code_plus = code (get "+" 0);;
let code_minus = code (get "-" 0);;
let coercion_description_holder = ref (function _ -> None : t -> int option);;
let coercion_description t = !coercion_description_holder t;;
let set_coercion_description f =
coercion_description_holder:=f; ();;
let xlate_error s = print_endline ("xlate_error : "^s);failwith ("Translation error: " ^ s);;
let ctf_STRING_OPT_NONE = CT_coerce_NONE_to_STRING_OPT CT_none;;
let ctf_STRING_OPT_SOME s = CT_coerce_STRING_to_STRING_OPT s;;
let ctf_STRING_OPT = function
| None -> ctf_STRING_OPT_NONE
| Some s -> ctf_STRING_OPT_SOME (CT_string s)
let ctv_ID_OPT_NONE = CT_coerce_NONE_to_ID_OPT CT_none;;
let ctf_ID_OPT_SOME s = CT_coerce_ID_to_ID_OPT s;;
let ctv_ID_OPT_OR_ALL_NONE =
CT_coerce_ID_OPT_to_ID_OPT_OR_ALL (CT_coerce_NONE_to_ID_OPT CT_none);;
let ctv_FORMULA_OPT_NONE =
CT_coerce_ID_OPT_to_FORMULA_OPT(CT_coerce_NONE_to_ID_OPT CT_none);;
let ctv_PATTERN_OPT_NONE = CT_coerce_NONE_to_PATTERN_OPT CT_none;;
let ctv_DEF_BODY_OPT_NONE = CT_coerce_FORMULA_OPT_to_DEF_BODY_OPT
ctv_FORMULA_OPT_NONE;;
let ctf_ID_OPT_OR_ALL_SOME s =
CT_coerce_ID_OPT_to_ID_OPT_OR_ALL (ctf_ID_OPT_SOME s);;
let ctv_ID_OPT_OR_ALL_ALL = CT_all;;
let ctv_SPEC_OPT_NONE = CT_coerce_NONE_to_SPEC_OPT CT_none;;
let ct_coerce_FORMULA_to_DEF_BODY x =
CT_coerce_CONTEXT_PATTERN_to_DEF_BODY
(CT_coerce_FORMULA_to_CONTEXT_PATTERN x);;
let castc x = CT_coerce_TYPED_FORMULA_to_FORMULA x;;
let varc x = CT_coerce_ID_to_FORMULA x;;
let xlate_ident id = CT_ident (string_of_id id)
let ident_tac s = CT_user_tac (xlate_ident s, CT_targ_list []);;
let ident_vernac s = CT_user_vernac (CT_ident s, CT_varg_list []);;
let nums_to_int_list_aux l = List.map (fun x -> CT_int x) l;;
let nums_to_int_list l = CT_int_list(nums_to_int_list_aux l);;
let num_or_var_to_int = function
| ArgArg x -> CT_int x
| _ -> xlate_error "TODO: nums_to_int_list_aux ArgVar";;
let nums_or_var_to_int_list_aux l = List.map num_or_var_to_int l;;
let nums_or_var_to_int_list l = CT_int_list(nums_or_var_to_int_list_aux l);;
let nums_or_var_to_int_ne_list n l =
CT_int_ne_list(num_or_var_to_int n, nums_or_var_to_int_list_aux l);;
type iTARG = Targ_command of ct_FORMULA
| Targ_intropatt of ct_INTRO_PATT_LIST
| Targ_id_list of ct_ID_LIST
| Targ_spec_list of ct_SPEC_LIST
| Targ_binding_com of ct_FORMULA
| Targ_ident of ct_ID
| Targ_int of ct_INT
| Targ_binding of ct_BINDING
| Targ_pattern of ct_PATTERN
| Targ_unfold of ct_UNFOLD
| Targ_unfold_ne_list of ct_UNFOLD_NE_LIST
| Targ_string of ct_STRING
| Targ_fixtac of ct_FIXTAC
| Targ_cofixtac of ct_COFIXTAC
| Targ_tacexp of ct_TACTIC_COM
| Targ_redexp of ct_RED_COM;;
type iVARG = Varg_binder of ct_BINDER
| Varg_binderlist of ct_BINDER_LIST
| Varg_bindernelist of ct_BINDER_NE_LIST
| Varg_call of ct_ID * iVARG list
| Varg_constr of ct_FORMULA
| Varg_sorttype of ct_SORT_TYPE
| Varg_constrlist of ct_FORMULA list
| Varg_ident of ct_ID
| Varg_int of ct_INT
| Varg_intlist of ct_INT_LIST
| Varg_none
| Varg_string of ct_STRING
| Varg_tactic of ct_TACTIC_COM
| Varg_ast of ct_AST
| Varg_astlist of ct_AST_LIST
| Varg_tactic_arg of iTARG
| Varg_varglist of iVARG list;;
let coerce_iVARG_to_FORMULA =
function
| Varg_constr x -> x
| Varg_sorttype x -> CT_coerce_SORT_TYPE_to_FORMULA x
| Varg_ident id -> CT_coerce_ID_to_FORMULA id
| _ -> xlate_error "coerce_iVARG_to_FORMULA: unexpected argument";;
let coerce_iVARG_to_ID =
function Varg_ident id -> id
| _ -> xlate_error "coerce_iVARG_to_ID";;
let coerce_VARG_to_ID =
function
| CT_coerce_ID_OPT_OR_ALL_to_VARG (CT_coerce_ID_OPT_to_ID_OPT_OR_ALL (CT_coerce_ID_to_ID_OPT x)) ->
x
| _ -> xlate_error "coerce_VARG_to_ID";;
let xlate_ident_opt =
function
| None -> ctv_ID_OPT_NONE
| Some id -> ctf_ID_OPT_SOME (xlate_ident id)
let xlate_id_to_id_or_int_opt s =
CT_coerce_ID_OPT_to_ID_OR_INT_OPT
(CT_coerce_ID_to_ID_OPT (CT_ident (string_of_id s)));;
let xlate_int_to_id_or_int_opt n =
CT_coerce_ID_OR_INT_to_ID_OR_INT_OPT
(CT_coerce_INT_to_ID_OR_INT (CT_int n));;
let none_in_id_or_int_opt =
CT_coerce_ID_OPT_to_ID_OR_INT_OPT
(CT_coerce_NONE_to_ID_OPT(CT_none));;
let xlate_int_opt = function
| Some n -> CT_coerce_INT_to_INT_OPT (CT_int n)
| None -> CT_coerce_NONE_to_INT_OPT CT_none
let xlate_int_or_var_opt_to_int_opt = function
| Some (ArgArg n) -> CT_coerce_INT_to_INT_OPT (CT_int n)
| Some (ArgVar _) -> xlate_error "int_or_var: TODO"
| None -> CT_coerce_NONE_to_INT_OPT CT_none
let apply_or_by_notation f = function
| AN x -> f x
| ByNotation _ -> xlate_error "TODO: ByNotation"
let tac_qualid_to_ct_ID ref =
CT_ident (Libnames.string_of_qualid (snd (qualid_of_reference ref)))
let loc_qualid_to_ct_ID ref =
CT_ident (Libnames.string_of_qualid (snd (qualid_of_reference ref)))
let int_of_meta n = int_of_string (string_of_id n)
let is_int_meta n = try let _ = int_of_meta n in true with _ -> false
let xlate_qualid_list l = CT_id_list (List.map loc_qualid_to_ct_ID l)
let reference_to_ct_ID = function
| Ident (_,id) -> CT_ident (Names.string_of_id id)
| Qualid (_,qid) -> CT_ident (Libnames.string_of_qualid qid)
let xlate_class = function
| FunClass -> CT_ident "FUNCLASS"
| SortClass -> CT_ident "SORTCLASS"
| RefClass qid -> loc_qualid_to_ct_ID qid
let id_to_pattern_var ctid =
match ctid with
| CT_metaid _ -> xlate_error "metaid not expected in pattern_var"
| CT_ident "_" ->
CT_coerce_ID_OPT_to_MATCH_PATTERN (CT_coerce_NONE_to_ID_OPT CT_none)
| CT_ident id_string ->
CT_coerce_ID_OPT_to_MATCH_PATTERN
(CT_coerce_ID_to_ID_OPT (CT_ident id_string))
| CT_metac _ -> assert false;;
exception Not_natural;;
let xlate_sort =
function
| RProp Term.Pos -> CT_sortc "Set"
| RProp Term.Null -> CT_sortc "Prop"
| RType None -> CT_sortc "Type"
| RType (Some u) -> xlate_error "xlate_sort";;
let xlate_qualid a =
let d,i = Libnames.repr_qualid a in
let l = Names.repr_dirpath d in
List.fold_left (fun s i1 -> (string_of_id i1) ^ "." ^ s) (string_of_id i) l;;
(* // The next two functions should be modified to make direct reference
to a notation operator *)
let notation_to_formula s l = CT_notation(CT_string s, CT_formula_list l);;
let xlate_reference = function
Ident(_,i) -> CT_ident (string_of_id i)
| Qualid(_, q) -> CT_ident (xlate_qualid q);;
let rec xlate_match_pattern =
function
| CPatAtom(_, Some s) -> id_to_pattern_var (xlate_reference s)
| CPatAtom(_, None) -> id_to_pattern_var (CT_ident "_")
| CPatCstr(_, f, []) -> id_to_pattern_var (xlate_reference f)
| CPatCstr (_, f1 , (arg1 :: args)) ->
CT_pattern_app
(id_to_pattern_var (xlate_reference f1),
CT_match_pattern_ne_list
(xlate_match_pattern arg1,
List.map xlate_match_pattern args))
| CPatAlias (_, pattern, id) ->
CT_pattern_as
(xlate_match_pattern pattern, CT_coerce_ID_to_ID_OPT (xlate_ident id))
| CPatOr (_,l) -> xlate_error "CPatOr: TODO"
| CPatDelimiters(_, key, p) ->
CT_pattern_delimitors(CT_num_type key, xlate_match_pattern p)
| CPatPrim (_,Numeral n) ->
CT_coerce_NUM_to_MATCH_PATTERN
(CT_int_encapsulator(Bigint.to_string n))
| CPatPrim (_,String _) -> xlate_error "CPatPrim (String): TODO"
| CPatNotation(_, s, l) ->
CT_pattern_notation(CT_string s,
CT_match_pattern_list(List.map xlate_match_pattern l))
;;
let xlate_id_opt_aux = function
Name id -> ctf_ID_OPT_SOME(CT_ident (string_of_id id))
| Anonymous -> ctv_ID_OPT_NONE;;
let xlate_id_opt (_, v) = xlate_id_opt_aux v;;
let xlate_id_opt_ne_list = function
[] -> assert false
| a::l -> CT_id_opt_ne_list(xlate_id_opt a, List.map xlate_id_opt l);;
let rec last = function
[] -> assert false
| [a] -> a
| a::tl -> last tl;;
let rec decompose_last = function
[] -> assert false
| [a] -> [], a
| a::tl -> let rl, b = decompose_last tl in (a::rl), b;;
let make_fix_struct (n,bl) =
let names = names_of_local_assums bl in
let nn = List.length names in
if nn = 1 || n = None then ctv_ID_OPT_NONE
else ctf_ID_OPT_SOME(CT_ident (string_of_id (snd (Option.get n))));;
let rec xlate_binder = function
(l,k,t) -> CT_binder(xlate_id_opt_ne_list l, xlate_formula t)
and xlate_return_info = function
| (Some Anonymous, None) | (None, None) ->
CT_coerce_NONE_to_RETURN_INFO CT_none
| (None, Some t) -> CT_return(xlate_formula t)
| (Some x, Some t) -> CT_as_and_return(xlate_id_opt_aux x, xlate_formula t)
| (Some _, None) -> assert false
and xlate_formula_opt =
function
| None -> ctv_FORMULA_OPT_NONE
| Some e -> CT_coerce_FORMULA_to_FORMULA_OPT (xlate_formula e)
and xlate_binder_l = function
LocalRawAssum(l,_,t) -> CT_binder(xlate_id_opt_ne_list l, xlate_formula t)
| LocalRawDef(n,v) -> CT_coerce_DEF_to_BINDER(CT_def(xlate_id_opt n,
xlate_formula v))
and
xlate_match_pattern_ne_list = function
[] -> assert false
| a::l -> CT_match_pattern_ne_list(xlate_match_pattern a,
List.map xlate_match_pattern l)
and translate_one_equation = function
(_,[_,lp], a) -> CT_eqn (xlate_match_pattern_ne_list lp, xlate_formula a)
| _ -> xlate_error "TODO: disjunctive multiple patterns"
and
xlate_binder_ne_list = function
[] -> assert false
| a::l -> CT_binder_ne_list(xlate_binder a, List.map xlate_binder l)
and
xlate_binder_list = function
l -> CT_binder_list( List.map xlate_binder_l l)
and (xlate_formula:Topconstr.constr_expr -> Ascent.ct_FORMULA) = function
CRef r -> varc (xlate_reference r)
| CArrow(_,a,b)-> CT_arrowc (xlate_formula a, xlate_formula b)
| CProdN(_,ll,b) as whole_term ->
let rec gather_binders = function
CProdN(_, ll, b) ->
ll@(gather_binders b)
| _ -> [] in
let rec fetch_ultimate_body = function
CProdN(_, _, b) -> fetch_ultimate_body b
| a -> a in
CT_prodc(xlate_binder_ne_list (gather_binders whole_term),
xlate_formula (fetch_ultimate_body b))
| CLambdaN(_,ll,b)-> CT_lambdac(xlate_binder_ne_list ll, xlate_formula b)
| CLetIn(_, v, a, b) ->
CT_letin(CT_def(xlate_id_opt v, xlate_formula a), xlate_formula b)
| CAppExpl(_, (Some n, r), l) ->
let l', last = decompose_last l in
CT_proj(xlate_formula last,
CT_formula_ne_list
(CT_bang(varc (xlate_reference r)),
List.map xlate_formula l'))
| CAppExpl(_, (None, r), []) -> CT_bang(varc(xlate_reference r))
| CAppExpl(_, (None, r), l) ->
CT_appc(CT_bang(varc (xlate_reference r)),
xlate_formula_ne_list l)
| CApp(_, (Some n,f), l) ->
let l', last = decompose_last l in
CT_proj(xlate_formula_expl last,
CT_formula_ne_list
(xlate_formula f, List.map xlate_formula_expl l'))
| CApp(_, (_,f), l) ->
CT_appc(xlate_formula f, xlate_formula_expl_ne_list l)
| CCases (_, _, _, [], _) -> assert false
| CCases (_, _, ret_type, tm::tml, eqns)->
CT_cases(CT_matched_formula_ne_list(xlate_matched_formula tm,
List.map xlate_matched_formula tml),
xlate_formula_opt ret_type,
CT_eqn_list (List.map (fun x -> translate_one_equation x) eqns))
| CLetTuple (_,a::l, ret_info, c, b) ->
CT_let_tuple(CT_id_opt_ne_list(xlate_id_opt_aux a,
List.map xlate_id_opt_aux l),
xlate_return_info ret_info,
xlate_formula c,
xlate_formula b)
| CLetTuple (_, [], _, _, _) -> xlate_error "NOT parsed: Let with ()"
| CIf (_,c, ret_info, b1, b2) ->
CT_if
(xlate_formula c, xlate_return_info ret_info,
xlate_formula b1, xlate_formula b2)
| CSort(_, s) -> CT_coerce_SORT_TYPE_to_FORMULA(xlate_sort s)
| CNotation(_, s, l) -> notation_to_formula s (List.map xlate_formula l)
| CPrim (_, Numeral i) ->
CT_coerce_NUM_to_FORMULA(CT_int_encapsulator(Bigint.to_string i))
| CPrim (_, String _) -> xlate_error "CPrim (String): TODO"
| CHole _ -> CT_existvarc
(* I assume CDynamic has been inserted to make free form extension of
the language possible, but this would go agains the logic of pcoq anyway. *)
| CDynamic (_, _) -> assert false
| CDelimiters (_, key, num) ->
CT_num_encapsulator(CT_num_type key , xlate_formula num)
| CCast (_, e, CastConv (_, t)) ->
CT_coerce_TYPED_FORMULA_to_FORMULA
(CT_typed_formula(xlate_formula e, xlate_formula t))
| CCast (_, e, CastCoerce) -> assert false
| CPatVar (_, (_,i)) when is_int_meta i ->
CT_coerce_ID_to_FORMULA(CT_metac (CT_int (int_of_meta i)))
| CPatVar (_, (false, s)) ->
CT_coerce_ID_to_FORMULA(CT_metaid (string_of_id s))
| CPatVar (_, (true, s)) ->
xlate_error "Second order variable not supported"
| CEvar _ -> xlate_error "CEvar not supported"
| CCoFix (_, (_, id), lm::lmi) ->
let strip_mutcorec ((_, fid), bl,arf, ardef) =
CT_cofix_rec (xlate_ident fid, xlate_binder_list bl,
xlate_formula arf, xlate_formula ardef) in
CT_cofixc(xlate_ident id,
(CT_cofix_rec_list (strip_mutcorec lm, List.map strip_mutcorec lmi)))
| CFix (_, (_, id), lm::lmi) ->
let strip_mutrec ((_, fid), (n, ro), bl, arf, ardef) =
let struct_arg = make_fix_struct (n, bl) in
let arf = xlate_formula arf in
let ardef = xlate_formula ardef in
match xlate_binder_list bl with
| CT_binder_list (b :: bl) ->
CT_fix_rec (xlate_ident fid, CT_binder_ne_list (b, bl),
struct_arg, arf, ardef)
| _ -> xlate_error "mutual recursive" in
CT_fixc (xlate_ident id,
CT_fix_binder_list
(CT_coerce_FIX_REC_to_FIX_BINDER
(strip_mutrec lm), List.map
(fun x-> CT_coerce_FIX_REC_to_FIX_BINDER (strip_mutrec x))
lmi))
| CCoFix _ -> assert false
| CFix _ -> assert false
and xlate_matched_formula = function
(f, (Some x, Some y)) ->
CT_formula_as_in(xlate_formula f, xlate_id_opt_aux x, xlate_formula y)
| (f, (None, Some y)) ->
CT_formula_in(xlate_formula f, xlate_formula y)
| (f, (Some x, None)) ->
CT_formula_as(xlate_formula f, xlate_id_opt_aux x)
| (f, (None, None)) ->
CT_coerce_FORMULA_to_MATCHED_FORMULA(xlate_formula f)
and xlate_formula_expl = function
(a, None) -> xlate_formula a
| (a, Some (_,ExplByPos (i, _))) ->
xlate_error "explicitation of implicit by rank not supported"
| (a, Some (_,ExplByName i)) ->
CT_labelled_arg(CT_ident (string_of_id i), xlate_formula a)
and xlate_formula_expl_ne_list = function
[] -> assert false
| a::l -> CT_formula_ne_list(xlate_formula_expl a, List.map xlate_formula_expl l)
and xlate_formula_ne_list = function
[] -> assert false
| a::l -> CT_formula_ne_list(xlate_formula a, List.map xlate_formula l);;
let (xlate_ident_or_metaid:
Names.identifier Util.located Tacexpr.or_metaid -> ct_ID) = function
AI (_, x) -> xlate_ident x
| MetaId(_, x) -> CT_metaid x;;
let nums_of_occs (b,nums) =
if b then nums
else List.map (function ArgArg x -> ArgArg (-x) | y -> y) nums
let xlate_hyp = function
| AI (_,id) -> xlate_ident id
| MetaId _ -> xlate_error "MetaId should occur only in quotations"
let xlate_hyp_location =
function
| (occs, AI (_,id)), InHypTypeOnly ->
CT_intype(xlate_ident id, nums_or_var_to_int_list (nums_of_occs occs))
| (occs, AI (_,id)), InHypValueOnly ->
CT_invalue(xlate_ident id, nums_or_var_to_int_list (nums_of_occs occs))
| (occs, AI (_,id)), InHyp when occs = all_occurrences_expr ->
CT_coerce_UNFOLD_to_HYP_LOCATION
(CT_coerce_ID_to_UNFOLD (xlate_ident id))
| ((_,a::l as occs), AI (_,id)), InHyp ->
let nums = nums_of_occs occs in
let a = List.hd nums and l = List.tl nums in
CT_coerce_UNFOLD_to_HYP_LOCATION
(CT_unfold_occ (xlate_ident id,
CT_int_ne_list(num_or_var_to_int a,
nums_or_var_to_int_list_aux l)))
| (_, AI (_,id)), InHyp -> xlate_error "Unused" (* (true,]) *)
| (_, MetaId _),_ ->
xlate_error "MetaId not supported in xlate_hyp_location (should occur only in quotations)"
let xlate_clause cls =
let hyps_info =
match cls.onhyps with
None -> CT_coerce_STAR_to_HYP_LOCATION_LIST_OR_STAR CT_star
| Some l -> CT_hyp_location_list(List.map xlate_hyp_location l) in
CT_clause
(hyps_info,
if cls.concl_occs <> no_occurrences_expr then
CT_coerce_STAR_to_STAR_OPT CT_star
else
CT_coerce_NONE_to_STAR_OPT CT_none)
(** Tactics
*)
let strip_targ_spec_list =
function
| Targ_spec_list x -> x
| _ -> xlate_error "strip tactic: non binding-list argument";;
let strip_targ_binding =
function
| Targ_binding x -> x
| _ -> xlate_error "strip tactic: non-binding argument";;
let strip_targ_command =
function
| Targ_command x -> x
| Targ_binding_com x -> x
| _ -> xlate_error "strip tactic: non-command argument";;
let strip_targ_ident =
function
| Targ_ident x -> x
| _ -> xlate_error "strip tactic: non-ident argument";;
let strip_targ_int =
function
| Targ_int x -> x
| _ -> xlate_error "strip tactic: non-int argument";;
let strip_targ_pattern =
function
| Targ_pattern x -> x
| _ -> xlate_error "strip tactic: non-pattern argument";;
let strip_targ_unfold =
function
| Targ_unfold x -> x
| _ -> xlate_error "strip tactic: non-unfold argument";;
let strip_targ_fixtac =
function
| Targ_fixtac x -> x
| _ -> xlate_error "strip tactic: non-fixtac argument";;
let strip_targ_cofixtac =
function
| Targ_cofixtac x -> x
| _ -> xlate_error "strip tactic: non-cofixtac argument";;
(*Need to transform formula to id for "Prolog" tactic problem *)
let make_ID_from_FORMULA =
function
| CT_coerce_ID_to_FORMULA id -> id
| _ -> xlate_error "make_ID_from_FORMULA: non-formula argument";;
let make_ID_from_iTARG_FORMULA x = make_ID_from_FORMULA (strip_targ_command x);;
let xlate_quantified_hypothesis = function
| AnonHyp n -> CT_coerce_INT_to_ID_OR_INT (CT_int n)
| NamedHyp id -> CT_coerce_ID_to_ID_OR_INT (xlate_ident id)
let xlate_quantified_hypothesis_opt = function
| None ->
CT_coerce_ID_OPT_to_ID_OR_INT_OPT ctv_ID_OPT_NONE
| Some (AnonHyp n) -> xlate_int_to_id_or_int_opt n
| Some (NamedHyp id) -> xlate_id_to_id_or_int_opt id;;
let xlate_id_or_int = function
ArgArg n -> CT_coerce_INT_to_ID_OR_INT(CT_int n)
| ArgVar(_, s) -> CT_coerce_ID_to_ID_OR_INT(xlate_ident s);;
let xlate_explicit_binding (loc,h,c) =
CT_binding (xlate_quantified_hypothesis h, xlate_formula c)
let xlate_bindings = function
| ImplicitBindings l ->
CT_coerce_FORMULA_LIST_to_SPEC_LIST
(CT_formula_list (List.map xlate_formula l))
| ExplicitBindings l ->
CT_coerce_BINDING_LIST_to_SPEC_LIST
(CT_binding_list (List.map xlate_explicit_binding l))
| NoBindings ->
CT_coerce_FORMULA_LIST_to_SPEC_LIST (CT_formula_list [])
let strip_targ_spec_list =
function
| Targ_spec_list x -> x
| _ -> xlate_error "strip_tar_spec_list";;
let strip_targ_intropatt =
function
| Targ_intropatt x -> x
| _ -> xlate_error "strip_targ_intropatt";;
let get_flag r =
let conv_flags, red_ids =
let csts = List.map (apply_or_by_notation tac_qualid_to_ct_ID) r.rConst in
if r.rDelta then
[CT_delta], CT_unfbut csts
else
(if r.rConst = []
then (* probably useless: just for compatibility *) []
else [CT_delta]),
CT_unf csts in
let conv_flags = if r.rBeta then CT_beta::conv_flags else conv_flags in
let conv_flags = if r.rIota then CT_iota::conv_flags else conv_flags in
let conv_flags = if r.rZeta then CT_zeta::conv_flags else conv_flags in
(* Rem: EVAR flag obsolète *)
conv_flags, red_ids
let rec xlate_intro_pattern (loc,pat) = match pat with
| IntroOrAndPattern [] -> assert false
| IntroOrAndPattern (fp::ll) ->
CT_disj_pattern
(CT_intro_patt_list(List.map xlate_intro_pattern fp),
List.map
(fun l ->
CT_intro_patt_list(List.map xlate_intro_pattern l))
ll)
| IntroWildcard -> CT_coerce_ID_to_INTRO_PATT(CT_ident "_" )
| IntroIdentifier c -> CT_coerce_ID_to_INTRO_PATT(xlate_ident c)
| IntroAnonymous -> xlate_error "TODO: IntroAnonymous"
| IntroFresh _ -> xlate_error "TODO: IntroFresh"
| IntroRewrite _ -> xlate_error "TODO: IntroRewrite"
let compute_INV_TYPE = function
FullInversionClear -> CT_inv_clear
| SimpleInversion -> CT_inv_simple
| FullInversion -> CT_inv_regular
let is_tactic_special_case = function
"AutoRewrite" -> true
| _ -> false;;
let xlate_context_pattern = function
| Term v ->
CT_coerce_FORMULA_to_CONTEXT_PATTERN (xlate_formula v)
| Subterm (idopt, v) ->
CT_context(xlate_ident_opt idopt, xlate_formula v)
let xlate_match_context_hyps = function
| Hyp (na,b) -> CT_premise_pattern(xlate_id_opt na, xlate_context_pattern b);;
let xlate_arg_to_id_opt = function
Some id -> CT_coerce_ID_to_ID_OPT(CT_ident (string_of_id id))
| None -> ctv_ID_OPT_NONE;;
let xlate_largs_to_id_opt largs =
match List.map xlate_arg_to_id_opt largs with
fst::rest -> fst, rest
| _ -> assert false;;
let xlate_int_or_constr = function
ElimOnConstr (a,NoBindings) -> CT_coerce_FORMULA_to_FORMULA_OR_INT(xlate_formula a)
| ElimOnConstr _ -> xlate_error "TODO: ElimOnConstr with bindings"
| ElimOnIdent(_,i) ->
CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
(CT_coerce_ID_to_ID_OR_INT(xlate_ident i))
| ElimOnAnonHyp i ->
CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
(CT_coerce_INT_to_ID_OR_INT(CT_int i));;
let xlate_using = function
None -> CT_coerce_NONE_to_USING(CT_none)
| Some (c2,sl2) -> CT_using (xlate_formula c2, xlate_bindings sl2);;
let xlate_one_unfold_block = function
((true,[]),qid) ->
CT_coerce_ID_to_UNFOLD(apply_or_by_notation tac_qualid_to_ct_ID qid)
| (((_,_::_) as occs), qid) ->
let l = nums_of_occs occs in
CT_unfold_occ(apply_or_by_notation tac_qualid_to_ct_ID qid,
nums_or_var_to_int_ne_list (List.hd l) (List.tl l))
| ((false,[]), qid) -> xlate_error "Unused"
;;
let xlate_with_names = function
None -> CT_coerce_ID_OPT_to_INTRO_PATT_OPT ctv_ID_OPT_NONE
| Some fp -> CT_coerce_INTRO_PATT_to_INTRO_PATT_OPT (xlate_intro_pattern fp)
let rawwit_main_tactic = Pcoq.rawwit_tactic Pcoq.tactic_main_level
let rec (xlate_tacarg:raw_tactic_arg -> ct_TACTIC_ARG) =
function
| TacVoid ->
CT_void
| Tacexp t ->
CT_coerce_TACTIC_COM_to_TACTIC_ARG(xlate_tactic t)
| Integer n ->
CT_coerce_FORMULA_OR_INT_to_TACTIC_ARG
(CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
(CT_coerce_INT_to_ID_OR_INT (CT_int n)))
| Reference r ->
CT_coerce_FORMULA_OR_INT_to_TACTIC_ARG
(CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
(CT_coerce_ID_to_ID_OR_INT (reference_to_ct_ID r)))
| TacDynamic _ ->
failwith "Dynamics not treated in xlate_ast"
| ConstrMayEval (ConstrTerm c) ->
CT_coerce_FORMULA_OR_INT_to_TACTIC_ARG
(CT_coerce_FORMULA_to_FORMULA_OR_INT (xlate_formula c))
| ConstrMayEval(ConstrEval(r,c)) ->
CT_coerce_EVAL_CMD_to_TACTIC_ARG
(CT_eval(CT_coerce_NONE_to_INT_OPT CT_none, xlate_red_tactic r,
xlate_formula c))
| ConstrMayEval(ConstrTypeOf(c)) ->
CT_coerce_TERM_CHANGE_to_TACTIC_ARG(CT_check_term(xlate_formula c))
| MetaIdArg _ ->
xlate_error "MetaIdArg should only be used in quotations"
| t ->
CT_coerce_TACTIC_COM_to_TACTIC_ARG(xlate_call_or_tacarg t)
and (xlate_call_or_tacarg:raw_tactic_arg -> ct_TACTIC_COM) =
function
(* Moved from xlate_tactic *)
| TacCall (_, r, a::l) ->
CT_simple_user_tac
(reference_to_ct_ID r,
CT_tactic_arg_list(xlate_tacarg a,List.map xlate_tacarg l))
| Reference (Ident (_,s)) -> ident_tac s
| ConstrMayEval(ConstrTerm a) ->
CT_formula_marker(xlate_formula a)
| TacFreshId [] -> CT_fresh(ctf_STRING_OPT None)
| TacFreshId [ArgArg s] -> CT_fresh(ctf_STRING_OPT (Some s))
| TacFreshId _ -> xlate_error "TODO: fresh with many args"
| t -> xlate_error "TODO LATER: result other than tactic or constr"
and xlate_red_tactic =
function
| Red true -> xlate_error ""
| Red false -> CT_red
| CbvVm -> CT_cbvvm
| Hnf -> CT_hnf
| Simpl None -> CT_simpl ctv_PATTERN_OPT_NONE
| Simpl (Some (occs,c)) ->
let l = nums_of_occs occs in
CT_simpl
(CT_coerce_PATTERN_to_PATTERN_OPT
(CT_pattern_occ
(CT_int_list(nums_or_var_to_int_list_aux l), xlate_formula c)))
| Cbv flag_list ->
let conv_flags, red_ids = get_flag flag_list in
CT_cbv (CT_conversion_flag_list conv_flags, red_ids)
| Lazy flag_list ->
let conv_flags, red_ids = get_flag flag_list in
CT_lazy (CT_conversion_flag_list conv_flags, red_ids)
| Unfold unf_list ->
let ct_unf_list = List.map xlate_one_unfold_block unf_list in
(match ct_unf_list with
| first :: others -> CT_unfold (CT_unfold_ne_list (first, others))
| [] -> error "there should be at least one thing to unfold")
| Fold formula_list ->
CT_fold(CT_formula_list(List.map xlate_formula formula_list))
| Pattern l ->
let pat_list = List.map (fun (occs,c) ->
CT_pattern_occ
(CT_int_list (nums_or_var_to_int_list_aux (nums_of_occs occs)),
xlate_formula c)) l in
(match pat_list with
| first :: others -> CT_pattern (CT_pattern_ne_list (first, others))
| [] -> error "Expecting at least one pattern in a Pattern command")
| ExtraRedExpr _ -> xlate_error "TODO LATER: ExtraRedExpr (probably dead code)"
and xlate_local_rec_tac = function
(* TODO LATER: local recursive tactics and global ones should be handled in
the same manner *)
| ((_,x),Tacexp (TacFun (argl,tac))) ->
let fst, rest = xlate_largs_to_id_opt argl in
CT_rec_tactic_fun(xlate_ident x,
CT_id_opt_ne_list(fst, rest),
xlate_tactic tac)
| _ -> xlate_error "TODO: more general argument of 'let rec in'"
and xlate_tactic =
function
| TacFun (largs, t) ->
let fst, rest = xlate_largs_to_id_opt largs in
CT_tactic_fun (CT_id_opt_ne_list(fst, rest), xlate_tactic t)
| TacThen (t1,[||],t2,[||]) ->
(match xlate_tactic t1 with
CT_then(a,l) -> CT_then(a,l@[xlate_tactic t2])
| t -> CT_then (t,[xlate_tactic t2]))
| TacThen _ -> xlate_error "TacThen generalization TODO"
| TacThens(t1,[]) -> assert false
| TacThens(t1,t::l) ->
let ct = xlate_tactic t in
let cl = List.map xlate_tactic l in
(match xlate_tactic t1 with
CT_then(ct1,cl1) -> CT_then(ct1, cl1@[CT_parallel(ct, cl)])
| ct1 -> CT_then(ct1,[CT_parallel(ct, cl)]))
| TacFirst([]) -> assert false
| TacFirst(t1::l)-> CT_first(xlate_tactic t1, List.map xlate_tactic l)
| TacSolve([]) -> assert false
| TacSolve(t1::l)-> CT_tacsolve(xlate_tactic t1, List.map xlate_tactic l)
| TacComplete _ -> xlate_error "TODO: tactical complete"
| TacDo(count, t) -> CT_do(xlate_id_or_int count, xlate_tactic t)
| TacTry t -> CT_try (xlate_tactic t)
| TacRepeat t -> CT_repeat(xlate_tactic t)
| TacAbstract(t,id_opt) ->
CT_abstract((match id_opt with
None -> ctv_ID_OPT_NONE
| Some id -> ctf_ID_OPT_SOME (CT_ident (string_of_id id))),
xlate_tactic t)
| TacProgress t -> CT_progress(xlate_tactic t)
| TacOrelse(t1,t2) -> CT_orelse(xlate_tactic t1, xlate_tactic t2)
| TacMatch (true,_,_) -> failwith "TODO: lazy match"
| TacMatch (false, exp, rules) ->
CT_match_tac(xlate_tactic exp,
match List.map
(function
| Pat ([],p,tac) ->
CT_match_tac_rule(xlate_context_pattern p,
mk_let_value tac)
| Pat (_,p,tac) -> xlate_error"No hyps in pure Match"
| All tac ->
CT_match_tac_rule
(CT_coerce_FORMULA_to_CONTEXT_PATTERN
CT_existvarc,
mk_let_value tac)) rules with
| [] -> assert false
| fst::others ->
CT_match_tac_rules(fst, others))
| TacMatchGoal (_,_,[]) | TacMatchGoal (true,_,_) -> failwith ""
| TacMatchGoal (false,false,rule1::rules) ->
CT_match_context(xlate_context_rule rule1,
List.map xlate_context_rule rules)
| TacMatchGoal (false,true,rule1::rules) ->
CT_match_context_reverse(xlate_context_rule rule1,
List.map xlate_context_rule rules)
| TacLetIn (false, l, t) ->
let cvt_clause =
function
((_,s),ConstrMayEval v) ->
CT_let_clause(xlate_ident s,
CT_coerce_NONE_to_TACTIC_OPT CT_none,
CT_coerce_DEF_BODY_to_LET_VALUE
(formula_to_def_body v))
| ((_,s),Tacexp t) ->
CT_let_clause(xlate_ident s,
CT_coerce_NONE_to_TACTIC_OPT CT_none,
CT_coerce_TACTIC_COM_to_LET_VALUE
(xlate_tactic t))
| ((_,s),t) ->
CT_let_clause(xlate_ident s,
CT_coerce_NONE_to_TACTIC_OPT CT_none,
CT_coerce_TACTIC_COM_to_LET_VALUE
(xlate_call_or_tacarg t)) in
let cl_l = List.map cvt_clause l in
(match cl_l with
| [] -> assert false
| fst::others ->
CT_let_ltac (CT_let_clauses(fst, others), mk_let_value t))
| TacLetIn(true, [], _) -> xlate_error "recursive definition with no definition"
| TacLetIn(true, f1::l, t) ->
let tl = CT_rec_tactic_fun_list
(xlate_local_rec_tac f1, List.map xlate_local_rec_tac l) in
CT_rec_tactic_in(tl, xlate_tactic t)
| TacAtom (_, t) -> xlate_tac t
| TacFail (count, []) -> CT_fail(xlate_id_or_int count, ctf_STRING_OPT_NONE)
| TacFail (count, [MsgString s]) -> CT_fail(xlate_id_or_int count,
ctf_STRING_OPT_SOME (CT_string s))
| TacFail (count, _) -> xlate_error "TODO: generic fail message"
| TacId [] -> CT_idtac ctf_STRING_OPT_NONE
| TacId [MsgString s] -> CT_idtac(ctf_STRING_OPT_SOME (CT_string s))
| TacId _ -> xlate_error "TODO: generic idtac message"
| TacInfo t -> CT_info(xlate_tactic t)
| TacArg a -> xlate_call_or_tacarg a
and xlate_tac =
function
| TacExtend (_, "firstorder", tac_opt::l) ->
let t1 =
match
out_gen (wit_opt rawwit_main_tactic) tac_opt
with
| None -> CT_coerce_NONE_to_TACTIC_OPT CT_none
| Some t2 -> CT_coerce_TACTIC_COM_to_TACTIC_OPT (xlate_tactic t2) in
(match l with
[] -> CT_firstorder t1
| [l1] ->
(match genarg_tag l1 with
List1ArgType PreIdentArgType ->
let l2 = List.map
(fun x -> CT_ident x)
(out_gen (wit_list1 rawwit_pre_ident) l1) in
let fst,l3 =
match l2 with fst::l3 -> fst,l3 | [] -> assert false in
CT_firstorder_using(t1, CT_id_ne_list(fst, l3))
| List1ArgType RefArgType ->
let l2 = List.map reference_to_ct_ID
(out_gen (wit_list1 rawwit_ref) l1) in
let fst,l3 =
match l2 with fst::l3 -> fst, l3 | [] -> assert false in
CT_firstorder_with(t1, CT_id_ne_list(fst, l3))
| _ -> assert false)
| _ -> assert false)
| TacExtend (_, "refine", [c]) ->
CT_refine (xlate_formula (snd (out_gen rawwit_casted_open_constr c)))
| TacExtend (_,"absurd",[c]) ->
CT_absurd (xlate_formula (out_gen rawwit_constr c))
| TacExtend (_,"contradiction",[opt_c]) ->
(match out_gen (wit_opt rawwit_constr_with_bindings) opt_c with
None -> CT_contradiction
| Some(c, b) ->
let c1 = xlate_formula c in
let bindings = xlate_bindings b in
CT_contradiction_thm(c1, bindings))
| TacChange (None, f, b) -> CT_change (xlate_formula f, xlate_clause b)
| TacChange (Some(l,c), f, b) ->
(* TODO LATER: combine with other constructions of pattern_occ *)
let l = nums_of_occs l in
CT_change_local(
CT_pattern_occ(CT_int_list(nums_or_var_to_int_list_aux l),
xlate_formula c),
xlate_formula f,
xlate_clause b)
| TacExtend (_,"contradiction",[]) -> CT_contradiction
| TacDoubleInduction (n1, n2) ->
CT_tac_double (xlate_quantified_hypothesis n1, xlate_quantified_hypothesis n2)
| TacExtend (_,"discriminate", []) ->
CT_discriminate_eq (CT_coerce_ID_OPT_to_ID_OR_INT_OPT ctv_ID_OPT_NONE)
| TacExtend (_,"discriminate", [id]) ->
CT_discriminate_eq
(xlate_quantified_hypothesis_opt
(Some (out_gen rawwit_quant_hyp id)))
| TacExtend (_,"simplify_eq", []) ->
CT_simplify_eq (CT_coerce_ID_OPT_to_ID_OR_INT_OPT
(CT_coerce_NONE_to_ID_OPT CT_none))
| TacExtend (_,"simplify_eq", [id]) ->
let id1 = out_gen rawwit_quant_hyp id in
let id2 = CT_coerce_ID_OR_INT_to_ID_OR_INT_OPT
(xlate_quantified_hypothesis id1) in
CT_simplify_eq id2
| TacExtend (_,"injection", []) ->
CT_injection_eq (CT_coerce_ID_OPT_to_ID_OR_INT_OPT ctv_ID_OPT_NONE)
| TacExtend (_,"injection", [id]) ->
CT_injection_eq
(xlate_quantified_hypothesis_opt
(Some (out_gen rawwit_quant_hyp id)))
| TacExtend (_,"injection_as", [idopt;ipat]) ->
xlate_error "TODO: injection as"
| TacFix (idopt, n) ->
CT_fixtactic (xlate_ident_opt idopt, CT_int n, CT_fix_tac_list [])
| TacMutualFix (false, id, n, fixtac_list) ->
let f (id,n,c) = CT_fixtac (xlate_ident id, CT_int n, xlate_formula c) in
CT_fixtactic
(ctf_ID_OPT_SOME (xlate_ident id), CT_int n,
CT_fix_tac_list (List.map f fixtac_list))
| TacMutualFix (true, id, n, fixtac_list) ->
xlate_error "TODO: non user-visible fix"
| TacCofix idopt ->
CT_cofixtactic (xlate_ident_opt idopt, CT_cofix_tac_list [])
| TacMutualCofix (false, id, cofixtac_list) ->
let f (id,c) = CT_cofixtac (xlate_ident id, xlate_formula c) in
CT_cofixtactic
(CT_coerce_ID_to_ID_OPT (xlate_ident id),
CT_cofix_tac_list (List.map f cofixtac_list))
| TacMutualCofix (true, id, cofixtac_list) ->
xlate_error "TODO: non user-visible cofix"
| TacIntrosUntil (NamedHyp id) ->
CT_intros_until (CT_coerce_ID_to_ID_OR_INT (xlate_ident id))
| TacIntrosUntil (AnonHyp n) ->
CT_intros_until (CT_coerce_INT_to_ID_OR_INT (CT_int n))
| TacIntroMove (Some id1, MoveAfter id2) ->
CT_intro_after(CT_coerce_ID_to_ID_OPT (xlate_ident id1),xlate_hyp id2)
| TacIntroMove (None, MoveAfter id2) ->
CT_intro_after(CT_coerce_NONE_to_ID_OPT CT_none, xlate_hyp id2)
| TacMove (true, id1, MoveAfter id2) ->
CT_move_after(xlate_hyp id1, xlate_hyp id2)
| TacMove (false, id1, id2) -> xlate_error "Non dep Move is only internal"
| TacMove _ -> xlate_error "TODO: move before, at top, at bottom"
| TacIntroPattern patt_list ->
CT_intros
(CT_intro_patt_list (List.map xlate_intro_pattern patt_list))
| TacIntroMove (Some id, MoveToEnd true) ->
CT_intros (CT_intro_patt_list[CT_coerce_ID_to_INTRO_PATT(xlate_ident id)])
| TacIntroMove (None, MoveToEnd true) ->
CT_intro (CT_coerce_NONE_to_ID_OPT CT_none)
| TacIntroMove _ -> xlate_error "TODO"
| TacLeft (false,bindl) -> CT_left (xlate_bindings bindl)
| TacRight (false,bindl) -> CT_right (xlate_bindings bindl)
| TacSplit (false,false,bindl) -> CT_split (xlate_bindings bindl)
| TacSplit (false,true,bindl) -> CT_exists (xlate_bindings bindl)
| TacSplit _ | TacRight _ | TacLeft _ ->
xlate_error "TODO: esplit, eright, etc"
| TacExtend (_,"replace", [c1; c2;cl;tac_opt]) ->
let c1 = xlate_formula (out_gen rawwit_constr c1) in
let c2 = xlate_formula (out_gen rawwit_constr c2) in
let cl =
(* J.F. : 18/08/2006
Hack to coerce the "clause" argument of replace to a real clause
To be remove if we can reuse the clause grammar entrie defined in g_tactic
*)
let cl_as_clause = Extraargs.raw_in_arg_hyp_to_clause (out_gen Extraargs.rawwit_in_arg_hyp cl) in
let cl_as_xlate_arg =
{cl_as_clause with
Tacexpr.onhyps =
Option.map
(fun l ->
List.map (fun ((l,id),hyp_flag) -> ((l, Tacexpr.AI ((),id)) ,hyp_flag)) l
)
cl_as_clause.Tacexpr.onhyps
}
in
cl_as_xlate_arg
in
let cl = xlate_clause cl in
let tac_opt =
match out_gen (Extraargs.rawwit_by_arg_tac) tac_opt with
| None -> CT_coerce_NONE_to_TACTIC_OPT CT_none
| Some tac ->
let tac = xlate_tactic tac in
CT_coerce_TACTIC_COM_to_TACTIC_OPT tac
in
CT_replace_with (c1, c2,cl,tac_opt)
| TacRewrite(false,[b,Precisely 1,cbindl],cl,None) ->
let cl = xlate_clause cl
and c = xlate_formula (fst cbindl)
and bindl = xlate_bindings (snd cbindl) in
if b then CT_rewrite_lr (c, bindl, cl)
else CT_rewrite_rl (c, bindl, cl)
| TacRewrite(_,_,_,Some _) -> xlate_error "TODO: rewrite by"
| TacRewrite(false,_,cl,_) -> xlate_error "TODO: rewrite of several hyps at once"
| TacRewrite(true,_,cl,_) -> xlate_error "TODO: erewrite"
| TacExtend (_,"conditional_rewrite", [t; b; cbindl]) ->
let t = out_gen rawwit_main_tactic t in
let b = out_gen Extraargs.rawwit_orient b in
let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
let c = xlate_formula c and bindl = xlate_bindings bindl in
if b then CT_condrewrite_lr (xlate_tactic t, c, bindl, ctv_ID_OPT_NONE)
else CT_condrewrite_rl (xlate_tactic t, c, bindl, ctv_ID_OPT_NONE)
| TacExtend (_,"conditional_rewrite", [t; b; cbindl; id]) ->
let t = out_gen rawwit_main_tactic t in
let b = out_gen Extraargs.rawwit_orient b in
let (c,bindl) = out_gen rawwit_constr_with_bindings cbindl in
let c = xlate_formula c and bindl = xlate_bindings bindl in
let id = ctf_ID_OPT_SOME (xlate_ident (snd (out_gen rawwit_var id))) in
if b then CT_condrewrite_lr (xlate_tactic t, c, bindl, id)
else CT_condrewrite_rl (xlate_tactic t, c, bindl, id)
| TacExtend (_,"dependent_rewrite", [b; c]) ->
let b = out_gen Extraargs.rawwit_orient b in
let c = xlate_formula (out_gen rawwit_constr c) in
(match c with
| CT_coerce_ID_to_FORMULA (CT_ident _ as id) ->
if b then CT_deprewrite_lr id else CT_deprewrite_rl id
| _ -> xlate_error "dependent rewrite on term: not supported")
| TacExtend (_,"dependent_rewrite", [b; c; id]) ->
xlate_error "dependent rewrite on terms in hypothesis: not supported"
| TacExtend (_,"cut_rewrite", [b; c]) ->
let b = out_gen Extraargs.rawwit_orient b in
let c = xlate_formula (out_gen rawwit_constr c) in
if b then CT_cutrewrite_lr (c, ctv_ID_OPT_NONE)
else CT_cutrewrite_lr (c, ctv_ID_OPT_NONE)
| TacExtend (_,"cut_rewrite", [b; c; id]) ->
let b = out_gen Extraargs.rawwit_orient b in
let c = xlate_formula (out_gen rawwit_constr c) in
let id = xlate_ident (snd (out_gen rawwit_var id)) in
if b then CT_cutrewrite_lr (c, ctf_ID_OPT_SOME id)
else CT_cutrewrite_lr (c, ctf_ID_OPT_SOME id)
| TacExtend(_, "subst", [l]) ->
CT_subst
(CT_id_list
(List.map (fun x -> CT_ident (string_of_id x))
(out_gen (wit_list1 rawwit_ident) l)))
| TacReflexivity -> CT_reflexivity
| TacSymmetry cls -> CT_symmetry(xlate_clause cls)
| TacTransitivity c -> CT_transitivity (xlate_formula c)
| TacAssumption -> CT_assumption
| TacExact c -> CT_exact (xlate_formula c)
| TacExactNoCheck c -> CT_exact_no_check (xlate_formula c)
| TacVmCastNoCheck c -> CT_vm_cast_no_check (xlate_formula c)
| TacDestructHyp (true, (_,id)) -> CT_cdhyp (xlate_ident id)
| TacDestructHyp (false, (_,id)) -> CT_dhyp (xlate_ident id)
| TacDestructConcl -> CT_dconcl
| TacSuperAuto (nopt,l,a3,a4) ->
CT_superauto(
xlate_int_opt nopt,
xlate_qualid_list l,
(if a3 then CT_destructing else CT_coerce_NONE_to_DESTRUCTING CT_none),
(if a4 then CT_usingtdb else CT_coerce_NONE_to_USINGTDB CT_none))
| TacAutoTDB nopt -> CT_autotdb (xlate_int_opt nopt)
| TacAuto (nopt, [], Some []) -> CT_auto (xlate_int_or_var_opt_to_int_opt nopt)
| TacAuto (nopt, [], None) ->
CT_auto_with (xlate_int_or_var_opt_to_int_opt nopt,
CT_coerce_STAR_to_ID_NE_LIST_OR_STAR CT_star)
| TacAuto (nopt, [], Some (id1::idl)) ->
CT_auto_with(xlate_int_or_var_opt_to_int_opt nopt,
CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR(
CT_id_ne_list(CT_ident id1, List.map (fun x -> CT_ident x) idl)))
| TacAuto (nopt, _::_, _) ->
xlate_error "TODO: auto using"
|TacExtend(_, ("autorewritev7"|"autorewritev8"), l::t) ->
let (id_list:ct_ID list) =
List.map (fun x -> CT_ident x) (out_gen (wit_list1 rawwit_pre_ident) l) in
let fst, (id_list1: ct_ID list) =
match id_list with [] -> assert false | a::tl -> a,tl in
let t1 =
match t with
[t0] ->
CT_coerce_TACTIC_COM_to_TACTIC_OPT
(xlate_tactic(out_gen rawwit_main_tactic t0))
| [] -> CT_coerce_NONE_to_TACTIC_OPT CT_none
| _ -> assert false in
CT_autorewrite (CT_id_ne_list(fst, id_list1), t1)
| TacExtend (_,"eauto", [nopt; popt; lems; idl]) ->
let first_n =
match out_gen (wit_opt rawwit_int_or_var) nopt with
| Some (ArgVar(_, s)) -> xlate_id_to_id_or_int_opt s
| Some (ArgArg n) -> xlate_int_to_id_or_int_opt n
| None -> none_in_id_or_int_opt in
let second_n =
match out_gen (wit_opt rawwit_int_or_var) popt with
| Some (ArgVar(_, s)) -> xlate_id_to_id_or_int_opt s
| Some (ArgArg n) -> xlate_int_to_id_or_int_opt n
| None -> none_in_id_or_int_opt in
let _lems =
match out_gen Eauto.rawwit_auto_using lems with
| [] -> []
| _ -> xlate_error "TODO: eauto using" in
let idl = out_gen Eauto.rawwit_hintbases idl in
(match idl with
None -> CT_eauto_with(first_n,
second_n,
CT_coerce_STAR_to_ID_NE_LIST_OR_STAR CT_star)
| Some [] -> CT_eauto(first_n, second_n)
| Some (a::l) ->
CT_eauto_with(first_n, second_n,
CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR
(CT_id_ne_list
(CT_ident a,
List.map (fun x -> CT_ident x) l))))
| TacExtend (_,"prolog", [cl; n]) ->
let cl = List.map xlate_formula (out_gen (wit_list0 rawwit_constr) cl) in
(match out_gen rawwit_int_or_var n with
| ArgVar _ -> xlate_error ""
| ArgArg n -> CT_prolog (CT_formula_list cl, CT_int n))
(* eapply now represented by TacApply (true,cbindl)
| TacExtend (_,"eapply", [cbindl]) ->
*)
| TacTrivial ([],Some []) -> CT_trivial
| TacTrivial ([],None) ->
CT_trivial_with(CT_coerce_STAR_to_ID_NE_LIST_OR_STAR CT_star)
| TacTrivial ([],Some (id1::idl)) ->
CT_trivial_with(CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STAR(
(CT_id_ne_list(CT_ident id1,List.map (fun x -> CT_ident x) idl))))
| TacTrivial (_::_,_) ->
xlate_error "TODO: trivial using"
| TacReduce (red, l) ->
CT_reduce (xlate_red_tactic red, xlate_clause l)
| TacApply (true,false,[c,bindl]) ->
CT_apply (xlate_formula c, xlate_bindings bindl)
| TacApply (true,true,[c,bindl]) ->
CT_eapply (xlate_formula c, xlate_bindings bindl)
| TacApply (_,_,_) ->
xlate_error "TODO: simple (e)apply and iterated apply"
| TacConstructor (false,n_or_meta, bindl) ->
let n = match n_or_meta with AI n -> n | MetaId _ -> xlate_error ""
in CT_constructor (CT_int n, xlate_bindings bindl)
| TacConstructor _ -> xlate_error "TODO: econstructor"
| TacSpecialize (nopt, (c,sl)) ->
CT_specialize (xlate_int_opt nopt, xlate_formula c, xlate_bindings sl)
| TacGeneralize [] -> xlate_error ""
| TacGeneralize ((((true,[]),first),Anonymous) :: cl)
when List.for_all (fun ((o,_),na) -> o = all_occurrences_expr
& na = Anonymous) cl ->
CT_generalize
(CT_formula_ne_list (xlate_formula first,
List.map (fun ((_,c),_) -> xlate_formula c) cl))
| TacGeneralize _ -> xlate_error "TODO: Generalize at and as"
| TacGeneralizeDep c ->
CT_generalize_dependent (xlate_formula c)
| TacElimType c -> CT_elim_type (xlate_formula c)
| TacCaseType c -> CT_case_type (xlate_formula c)
| TacElim (false,(c1,sl), u) ->
CT_elim (xlate_formula c1, xlate_bindings sl, xlate_using u)
| TacCase (false,(c1,sl)) ->
CT_casetac (xlate_formula c1, xlate_bindings sl)
| TacElim (true,_,_) | TacCase (true,_)
| TacInductionDestruct (_,true,_) ->
xlate_error "TODO: eelim, ecase, edestruct, einduction"
| TacSimpleInductionDestruct (true,h) ->
CT_induction (xlate_quantified_hypothesis h)
| TacSimpleInductionDestruct (false,h) ->
CT_destruct (xlate_quantified_hypothesis h)
| TacCut c -> CT_cut (xlate_formula c)
| TacLApply c -> CT_use (xlate_formula c)
| TacDecompose ([],c) ->
xlate_error "Decompose : empty list of identifiers?"
| TacDecompose (id::l,c) ->
let id' = apply_or_by_notation tac_qualid_to_ct_ID id in
let l' = List.map (apply_or_by_notation tac_qualid_to_ct_ID) l in
CT_decompose_list(CT_id_ne_list(id',l'),xlate_formula c)
| TacDecomposeAnd c -> CT_decompose_record (xlate_formula c)
| TacDecomposeOr c -> CT_decompose_sum(xlate_formula c)
| TacClear (false,[]) ->
xlate_error "Clear expects a non empty list of identifiers"
| TacClear (false,id::idl) ->
let idl' = List.map xlate_hyp idl in
CT_clear (CT_id_ne_list (xlate_hyp id, idl'))
| TacClear (true,_) -> xlate_error "TODO: 'clear - idl' and 'clear'"
| TacRevert _ -> xlate_error "TODO: revert"
| (*For translating tactics/Inv.v *)
TacInversion (NonDepInversion (k,idl,l),quant_hyp) ->
CT_inversion(compute_INV_TYPE k, xlate_quantified_hypothesis quant_hyp,
xlate_with_names l,
CT_id_list (List.map xlate_hyp idl))
| TacInversion (DepInversion (k,copt,l),quant_hyp) ->
let id = xlate_quantified_hypothesis quant_hyp in
CT_depinversion (compute_INV_TYPE k, id,
xlate_with_names l, xlate_formula_opt copt)
| TacInversion (InversionUsing (c,idlist), id) ->
let id = xlate_quantified_hypothesis id in
CT_use_inversion (id, xlate_formula c,
CT_id_list (List.map xlate_hyp idlist))
| TacExtend (_,"omega", []) -> CT_omega
| TacRename [id1, id2] -> CT_rename(xlate_hyp id1, xlate_hyp id2)
| TacRename _ -> xlate_error "TODO: add support for n-ary rename"
| TacClearBody([]) -> assert false
| TacClearBody(a::l) ->
CT_clear_body (CT_id_ne_list (xlate_hyp a, List.map xlate_hyp l))
| TacDAuto (a, b, []) ->
CT_dauto(xlate_int_or_var_opt_to_int_opt a, xlate_int_opt b)
| TacDAuto (a, b, _) ->
xlate_error "TODO: dauto using"
| TacInductionDestruct(true,false,[a,b,(None,c),None]) ->
CT_new_destruct
(List.map xlate_int_or_constr a, xlate_using b,
xlate_with_names c)
| TacInductionDestruct(false,false,[a,b,(None,c),None]) ->
CT_new_induction
(List.map xlate_int_or_constr a, xlate_using b,
xlate_with_names c)
| TacInductionDestruct(_,false,_) ->
xlate_error "TODO: clause 'in' and full 'as' of destruct/induction"
| TacLetTac (na, c, cl, true) when cl = nowhere ->
CT_pose(xlate_id_opt_aux na, xlate_formula c)
| TacLetTac (na, c, cl, true) ->
CT_lettac(xlate_id_opt ((0,0),na), xlate_formula c,
(* TODO LATER: This should be shared with Unfold,
but the structures are different *)
xlate_clause cl)
| TacLetTac (na, c, cl, false) -> xlate_error "TODO: remember"
| TacAssert (None, (_,IntroIdentifier id), c) ->
CT_assert(xlate_id_opt ((0,0),Name id), xlate_formula c)
| TacAssert (None, (_,IntroAnonymous), c) ->
CT_assert(xlate_id_opt ((0,0),Anonymous), xlate_formula c)
| TacAssert (Some (TacId []), (_,IntroIdentifier id), c) ->
CT_truecut(xlate_id_opt ((0,0),Name id), xlate_formula c)
| TacAssert (Some (TacId []), (_,IntroAnonymous), c) ->
CT_truecut(xlate_id_opt ((0,0),Anonymous), xlate_formula c)
| TacAssert _ ->
xlate_error "TODO: assert with 'as' and 'by' and pose proof with 'as'"
| TacAnyConstructor(false,Some tac) ->
CT_any_constructor
(CT_coerce_TACTIC_COM_to_TACTIC_OPT(xlate_tactic tac))
| TacAnyConstructor(false,None) ->
CT_any_constructor(CT_coerce_NONE_to_TACTIC_OPT CT_none)
| TacAnyConstructor _ -> xlate_error "TODO: econstructor"
| TacExtend(_, "ring", [args]) ->
CT_ring
(CT_formula_list
(List.map xlate_formula
(out_gen (wit_list0 rawwit_constr) args)))
| TacExtend (_, "f_equal", _) -> xlate_error "TODO: f_equal"
| TacExtend (_,id, l) ->
print_endline ("Extratactics : "^ id);
CT_user_tac (CT_ident id, CT_targ_list (List.map coerce_genarg_to_TARG l))
| TacAlias _ -> xlate_error "Alias not supported"
and coerce_genarg_to_TARG x =
match Genarg.genarg_tag x with
(* Basic types *)
| BoolArgType -> xlate_error "TODO: generic boolean argument"
| IntArgType ->
let n = out_gen rawwit_int x in
CT_coerce_FORMULA_OR_INT_to_TARG
(CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
(CT_coerce_INT_to_ID_OR_INT (CT_int n)))
| IntOrVarArgType ->
let x = match out_gen rawwit_int_or_var x with
| ArgArg n -> CT_coerce_INT_to_ID_OR_INT (CT_int n)
| ArgVar (_,id) -> CT_coerce_ID_to_ID_OR_INT (xlate_ident id) in
CT_coerce_FORMULA_OR_INT_to_TARG
(CT_coerce_ID_OR_INT_to_FORMULA_OR_INT x)
| StringArgType ->
let s = CT_string (out_gen rawwit_string x) in
CT_coerce_SCOMMENT_CONTENT_to_TARG
(CT_coerce_ID_OR_STRING_to_SCOMMENT_CONTENT
(CT_coerce_STRING_to_ID_OR_STRING s))
| PreIdentArgType ->
let id = CT_ident (out_gen rawwit_pre_ident x) in
CT_coerce_FORMULA_OR_INT_to_TARG
(CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
(CT_coerce_ID_to_ID_OR_INT id))
| IntroPatternArgType ->
xlate_error "TODO"
| IdentArgType ->
let id = xlate_ident (out_gen rawwit_ident x) in
CT_coerce_FORMULA_OR_INT_to_TARG
(CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
(CT_coerce_ID_to_ID_OR_INT id))
| VarArgType ->
let id = xlate_ident (snd (out_gen rawwit_var x)) in
CT_coerce_FORMULA_OR_INT_to_TARG
(CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
(CT_coerce_ID_to_ID_OR_INT id))
| RefArgType ->
let id = tac_qualid_to_ct_ID (out_gen rawwit_ref x) in
CT_coerce_FORMULA_OR_INT_to_TARG
(CT_coerce_ID_OR_INT_to_FORMULA_OR_INT
(CT_coerce_ID_to_ID_OR_INT id))
(* Specific types *)
| SortArgType ->
CT_coerce_SCOMMENT_CONTENT_to_TARG
(CT_coerce_FORMULA_to_SCOMMENT_CONTENT
(CT_coerce_SORT_TYPE_to_FORMULA (xlate_sort (out_gen rawwit_sort x))))
| ConstrArgType ->
CT_coerce_SCOMMENT_CONTENT_to_TARG
(CT_coerce_FORMULA_to_SCOMMENT_CONTENT (xlate_formula (out_gen rawwit_constr x)))
| ConstrMayEvalArgType -> xlate_error"TODO: generic constr-may-eval argument"
| QuantHypArgType ->xlate_error"TODO: generic quantified hypothesis argument"
| OpenConstrArgType b ->
CT_coerce_SCOMMENT_CONTENT_to_TARG
(CT_coerce_FORMULA_to_SCOMMENT_CONTENT(xlate_formula
(snd (out_gen
(rawwit_open_constr_gen b) x))))
| ExtraArgType s as y when Pcoq.is_tactic_genarg y ->
let n = Option.get (Pcoq.tactic_genarg_level s) in
let t = xlate_tactic (out_gen (Pcoq.rawwit_tactic n) x) in
CT_coerce_TACTIC_COM_to_TARG t
| ConstrWithBindingsArgType -> xlate_error "TODO: generic constr with bindings"
| BindingsArgType -> xlate_error "TODO: generic with bindings"
| RedExprArgType -> xlate_error "TODO: generic red expr"
| List0ArgType l -> xlate_error "TODO: lists of generic arguments"
| List1ArgType l -> xlate_error "TODO: non empty lists of generic arguments"
| OptArgType x -> xlate_error "TODO: optional generic arguments"
| PairArgType (u,v) -> xlate_error "TODO: pairs of generic arguments"
| ExtraArgType s -> xlate_error "Cannot treat extra generic arguments"
and xlate_context_rule =
function
| Pat (hyps, concl_pat, tactic) ->
CT_context_rule
(CT_context_hyp_list (List.map xlate_match_context_hyps hyps),
xlate_context_pattern concl_pat, xlate_tactic tactic)
| All tactic ->
CT_def_context_rule (xlate_tactic tactic)
and formula_to_def_body =
function
| ConstrEval (red, f) ->
CT_coerce_EVAL_CMD_to_DEF_BODY(
CT_eval(CT_coerce_NONE_to_INT_OPT CT_none,
xlate_red_tactic red, xlate_formula f))
| ConstrContext((_, id), f) ->
CT_coerce_CONTEXT_PATTERN_to_DEF_BODY
(CT_context
(CT_coerce_ID_to_ID_OPT (CT_ident (string_of_id id)),
xlate_formula f))
| ConstrTypeOf f -> CT_type_of (xlate_formula f)
| ConstrTerm c -> ct_coerce_FORMULA_to_DEF_BODY(xlate_formula c)
and mk_let_value = function
TacArg (ConstrMayEval v) ->
CT_coerce_DEF_BODY_to_LET_VALUE(formula_to_def_body v)
| v -> CT_coerce_TACTIC_COM_to_LET_VALUE(xlate_tactic v);;
let coerce_genarg_to_VARG x =
match Genarg.genarg_tag x with
(* Basic types *)
| BoolArgType -> xlate_error "TODO: generic boolean argument"
| IntArgType ->
let n = out_gen rawwit_int x in
CT_coerce_ID_OR_INT_OPT_to_VARG
(CT_coerce_INT_OPT_to_ID_OR_INT_OPT
(CT_coerce_INT_to_INT_OPT (CT_int n)))
| IntOrVarArgType ->
(match out_gen rawwit_int_or_var x with
| ArgArg n ->
CT_coerce_ID_OR_INT_OPT_to_VARG
(CT_coerce_INT_OPT_to_ID_OR_INT_OPT
(CT_coerce_INT_to_INT_OPT (CT_int n)))
| ArgVar (_,id) ->
CT_coerce_ID_OPT_OR_ALL_to_VARG
(CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
(CT_coerce_ID_to_ID_OPT (xlate_ident id))))
| StringArgType ->
let s = CT_string (out_gen rawwit_string x) in
CT_coerce_STRING_OPT_to_VARG (CT_coerce_STRING_to_STRING_OPT s)
| PreIdentArgType ->
let id = CT_ident (out_gen rawwit_pre_ident x) in
CT_coerce_ID_OPT_OR_ALL_to_VARG
(CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
(CT_coerce_ID_to_ID_OPT id))
| IntroPatternArgType ->
xlate_error "TODO"
| IdentArgType ->
let id = xlate_ident (out_gen rawwit_ident x) in
CT_coerce_ID_OPT_OR_ALL_to_VARG
(CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
(CT_coerce_ID_to_ID_OPT id))
| VarArgType ->
let id = xlate_ident (snd (out_gen rawwit_var x)) in
CT_coerce_ID_OPT_OR_ALL_to_VARG
(CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
(CT_coerce_ID_to_ID_OPT id))
| RefArgType ->
let id = tac_qualid_to_ct_ID (out_gen rawwit_ref x) in
CT_coerce_ID_OPT_OR_ALL_to_VARG
(CT_coerce_ID_OPT_to_ID_OPT_OR_ALL
(CT_coerce_ID_to_ID_OPT id))
(* Specific types *)
| SortArgType ->
CT_coerce_FORMULA_OPT_to_VARG
(CT_coerce_FORMULA_to_FORMULA_OPT
(CT_coerce_SORT_TYPE_to_FORMULA (xlate_sort (out_gen rawwit_sort x))))
| ConstrArgType ->
CT_coerce_FORMULA_OPT_to_VARG
(CT_coerce_FORMULA_to_FORMULA_OPT (xlate_formula (out_gen rawwit_constr x)))
| ConstrMayEvalArgType -> xlate_error"TODO: generic constr-may-eval argument"
| QuantHypArgType ->xlate_error"TODO: generic quantified hypothesis argument"
| ExtraArgType s as y when Pcoq.is_tactic_genarg y ->
let n = Option.get (Pcoq.tactic_genarg_level s) in
let t = xlate_tactic (out_gen (Pcoq.rawwit_tactic n) x) in
CT_coerce_TACTIC_OPT_to_VARG (CT_coerce_TACTIC_COM_to_TACTIC_OPT t)
| OpenConstrArgType _ -> xlate_error "TODO: generic open constr"
| ConstrWithBindingsArgType -> xlate_error "TODO: generic constr with bindings"
| BindingsArgType -> xlate_error "TODO: generic with bindings"
| RedExprArgType -> xlate_error "TODO: red expr as generic argument"
| List0ArgType l -> xlate_error "TODO: lists of generic arguments"
| List1ArgType l -> xlate_error "TODO: non empty lists of generic arguments"
| OptArgType x -> xlate_error "TODO: optional generic arguments"
| PairArgType (u,v) -> xlate_error "TODO: pairs of generic arguments"
| ExtraArgType s -> xlate_error "Cannot treat extra generic arguments"
let xlate_thm x = CT_thm (string_of_theorem_kind x)
let xlate_defn k = CT_defn (string_of_definition_kind k)
let xlate_var x = CT_var (match x with
| (Global,Definitional) -> "Parameter"
| (Global,Logical) -> "Axiom"
| (Local,Definitional) -> "Variable"
| (Local,Logical) -> "Hypothesis"
| (Global,Conjectural) -> "Conjecture"
| (Local,Conjectural) -> xlate_error "No local conjecture");;
let xlate_dep =
function
| true -> CT_dep "Induction for"
| false -> CT_dep "Minimality for";;
let xlate_locn =
function
| GoTo n -> CT_coerce_INT_to_INT_OR_LOCN (CT_int n)
| GoTop -> CT_coerce_LOCN_to_INT_OR_LOCN (CT_locn "top")
| GoPrev -> CT_coerce_LOCN_to_INT_OR_LOCN (CT_locn "prev")
| GoNext -> CT_coerce_LOCN_to_INT_OR_LOCN (CT_locn "next")
let xlate_search_restr =
function
| SearchOutside [] -> CT_coerce_NONE_to_IN_OR_OUT_MODULES CT_none
| SearchInside (m1::l1) ->
CT_in_modules (CT_id_ne_list(loc_qualid_to_ct_ID m1,
List.map loc_qualid_to_ct_ID l1))
| SearchOutside (m1::l1) ->
CT_out_modules (CT_id_ne_list(loc_qualid_to_ct_ID m1,
List.map loc_qualid_to_ct_ID l1))
| SearchInside [] -> xlate_error "bad extra argument for Search"
let xlate_check =
function
| "CHECK" -> "Check"
| "PRINTTYPE" -> "Type"
| _ -> xlate_error "xlate_check";;
let build_constructors l =
let f (coe,((_,id),c)) =
if coe then CT_constr_coercion (xlate_ident id, xlate_formula c)
else CT_constr (xlate_ident id, xlate_formula c) in
CT_constr_list (List.map f l)
let build_record_field_list l =
let build_record_field (coe,d) = match d with
| AssumExpr (id,c) ->
if coe then CT_recconstr_coercion (xlate_id_opt id, xlate_formula c)
else
CT_recconstr(xlate_id_opt id, xlate_formula c)
| DefExpr (id,c,topt) ->
if coe then
CT_defrecconstr_coercion(xlate_id_opt id, xlate_formula c,
xlate_formula_opt topt)
else
CT_defrecconstr(xlate_id_opt id, xlate_formula c, xlate_formula_opt topt) in
CT_recconstr_list (List.map build_record_field l);;
let get_require_flags impexp spec =
let ct_impexp =
match impexp with
| None -> CT_coerce_NONE_to_IMPEXP CT_none
| Some false -> CT_import
| Some true -> CT_export in
let ct_spec =
match spec with
| None -> ctv_SPEC_OPT_NONE
| Some true -> CT_spec
| Some false -> ctv_SPEC_OPT_NONE in
ct_impexp, ct_spec;;
let cvt_optional_eval_for_definition c1 optional_eval =
match optional_eval with
None -> ct_coerce_FORMULA_to_DEF_BODY (xlate_formula c1)
| Some red ->
CT_coerce_EVAL_CMD_to_DEF_BODY(
CT_eval(CT_coerce_NONE_to_INT_OPT CT_none,
xlate_red_tactic red,
xlate_formula c1))
let cvt_vernac_binder = function
| b,(id::idl,c) ->
let l,t =
CT_id_opt_ne_list
(xlate_ident_opt (Some (snd id)),
List.map (fun id -> xlate_ident_opt (Some (snd id))) idl),
xlate_formula c in
if b then
CT_binder_coercion(l,t)
else
CT_binder(l,t)
| _, _ -> xlate_error "binder with no left part, rejected";;
let cvt_vernac_binders = function
a::args -> CT_binder_ne_list(cvt_vernac_binder a, List.map cvt_vernac_binder args)
| [] -> assert false;;
let xlate_comment = function
CommentConstr c -> CT_coerce_FORMULA_to_SCOMMENT_CONTENT(xlate_formula c)
| CommentString s -> CT_coerce_ID_OR_STRING_to_SCOMMENT_CONTENT
(CT_coerce_STRING_to_ID_OR_STRING(CT_string s))
| CommentInt n ->
CT_coerce_FORMULA_to_SCOMMENT_CONTENT
(CT_coerce_NUM_to_FORMULA(CT_int_encapsulator (string_of_int n)));;
let translate_opt_notation_decl = function
None -> CT_coerce_NONE_to_DECL_NOTATION_OPT(CT_none)
| Some(s, f, sc) ->
let tr_sc =
match sc with
None -> ctv_ID_OPT_NONE
| Some id -> CT_coerce_ID_to_ID_OPT (CT_ident id) in
CT_decl_notation(CT_string s, xlate_formula f, tr_sc);;
let xlate_level = function
Extend.NumLevel n -> CT_coerce_INT_to_INT_OR_NEXT(CT_int n)
| Extend.NextLevel -> CT_next_level;;
let xlate_syntax_modifier = function
Extend.SetItemLevel((s::sl), level) ->
CT_set_item_level
(CT_id_ne_list(CT_ident s, List.map (fun s -> CT_ident s) sl),
xlate_level level)
| Extend.SetItemLevel([], _) -> assert false
| Extend.SetLevel level -> CT_set_level (CT_int level)
| Extend.SetAssoc Gramext.LeftA -> CT_lefta
| Extend.SetAssoc Gramext.RightA -> CT_righta
| Extend.SetAssoc Gramext.NonA -> CT_nona
| Extend.SetEntryType(x,typ) ->
CT_entry_type(CT_ident x,
match typ with
Extend.ETIdent -> CT_ident "ident"
| Extend.ETReference -> CT_ident "global"
| Extend.ETBigint -> CT_ident "bigint"
| _ -> xlate_error "syntax_type not parsed")
| Extend.SetOnlyParsing -> CT_only_parsing
| Extend.SetFormat(_,s) -> CT_format(CT_string s);;
let rec xlate_module_type = function
| CMTEident(_, qid) ->
CT_coerce_ID_to_MODULE_TYPE(CT_ident (xlate_qualid qid))
| CMTEwith(mty, decl) ->
let mty1 = xlate_module_type mty in
(match decl with
CWith_Definition((_, idl), c) ->
CT_module_type_with_def(mty1,
CT_id_list (List.map xlate_ident idl),
xlate_formula c)
| CWith_Module((_, idl), (_, qid)) ->
CT_module_type_with_mod(mty1,
CT_id_list (List.map xlate_ident idl),
CT_ident (xlate_qualid qid)))
| CMTEapply (_,_) -> xlate_error "TODO: Funsig application";;
let xlate_module_binder_list (l:module_binder list) =
CT_module_binder_list
(List.map (fun (_, idl, mty) ->
let idl1 =
List.map (fun (_, x) -> CT_ident (string_of_id x)) idl in
let fst,idl2 = match idl1 with
[] -> assert false
| fst::idl2 -> fst,idl2 in
CT_module_binder
(CT_id_ne_list(fst, idl2), xlate_module_type mty)) l);;
let xlate_module_type_check_opt = function
None -> CT_coerce_MODULE_TYPE_OPT_to_MODULE_TYPE_CHECK
(CT_coerce_ID_OPT_to_MODULE_TYPE_OPT ctv_ID_OPT_NONE)
| Some(mty, true) -> CT_only_check(xlate_module_type mty)
| Some(mty, false) ->
CT_coerce_MODULE_TYPE_OPT_to_MODULE_TYPE_CHECK
(CT_coerce_MODULE_TYPE_to_MODULE_TYPE_OPT
(xlate_module_type mty));;
let rec xlate_module_expr = function
CMEident (_, qid) -> CT_coerce_ID_OPT_to_MODULE_EXPR
(CT_coerce_ID_to_ID_OPT (CT_ident (xlate_qualid qid)))
| CMEapply (me1, me2) -> CT_module_app(xlate_module_expr me1,
xlate_module_expr me2)
let rec xlate_vernac =
function
| VernacDeclareTacticDefinition (true, tacs) ->
(match List.map
(function
(id, _, body) ->
CT_tac_def(reference_to_ct_ID id, xlate_tactic body))
tacs with
[] -> assert false
| fst::tacs1 ->
CT_tactic_definition
(CT_tac_def_ne_list(fst, tacs1)))
| VernacDeclareTacticDefinition(false, _) ->
xlate_error "obsolete tactic definition not handled"
| VernacLoad (verbose,s) ->
CT_load (
(match verbose with
| false -> CT_coerce_NONE_to_VERBOSE_OPT CT_none
| true -> CT_verbose),
CT_coerce_STRING_to_ID_OR_STRING (CT_string s))
| VernacCheckMayEval (Some red, numopt, f) ->
let red = xlate_red_tactic red in
CT_coerce_EVAL_CMD_to_COMMAND
(CT_eval (xlate_int_opt numopt, red, xlate_formula f))
|VernacChdir opt_s -> CT_cd (ctf_STRING_OPT opt_s)
| VernacAddLoadPath (false,str,None) ->
CT_addpath (CT_string str, ctv_ID_OPT_NONE)
| VernacAddLoadPath (false,str,Some x) ->
CT_addpath (CT_string str,
CT_coerce_ID_to_ID_OPT (CT_ident (string_of_dirpath x)))
| VernacAddLoadPath (true,str,None) ->
CT_recaddpath (CT_string str, ctv_ID_OPT_NONE)
| VernacAddLoadPath (_,str, Some x) ->
CT_recaddpath (CT_string str,
CT_coerce_ID_to_ID_OPT (CT_ident (string_of_dirpath x)))
| VernacRemoveLoadPath str -> CT_delpath (CT_string str)
| VernacToplevelControl Quit -> CT_quit
| VernacToplevelControl _ -> xlate_error "Drop/ProtectedToplevel not supported"
(*ML commands *)
| VernacAddMLPath (false,str) -> CT_ml_add_path (CT_string str)
| VernacAddMLPath (true,str) -> CT_rec_ml_add_path (CT_string str)
| VernacDeclareMLModule [] -> failwith ""
| VernacDeclareMLModule (str :: l) ->
CT_ml_declare_modules
(CT_string_ne_list (CT_string str, List.map (fun x -> CT_string x) l))
| VernacGoal c ->
CT_coerce_THEOREM_GOAL_to_COMMAND (CT_goal (xlate_formula c))
| VernacAbort (Some (_,id)) ->
CT_abort(ctf_ID_OPT_OR_ALL_SOME(xlate_ident id))
| VernacAbort None -> CT_abort ctv_ID_OPT_OR_ALL_NONE
| VernacAbortAll -> CT_abort ctv_ID_OPT_OR_ALL_ALL
| VernacRestart -> CT_restart
| VernacSolve (n, tac, b) ->
CT_solve (CT_int n, xlate_tactic tac,
if b then CT_dotdot
else CT_coerce_NONE_to_DOTDOT_OPT CT_none)
(* MMode *)
| (VernacDeclProof | VernacReturn | VernacProofInstr _) ->
anomaly "No MMode in CTcoq"
(* /MMode *)
| VernacFocus nopt -> CT_focus (xlate_int_opt nopt)
| VernacUnfocus -> CT_unfocus
|VernacExtend("Extraction", [f;l]) ->
let file = out_gen rawwit_string f in
let l1 = out_gen (wit_list1 rawwit_ref) l in
let fst,l2 = match l1 with [] -> assert false | fst::l2 -> fst, l2 in
CT_extract_to_file(CT_string file,
CT_id_ne_list(loc_qualid_to_ct_ID fst,
List.map loc_qualid_to_ct_ID l2))
| VernacExtend("ExtractionInline", [l]) ->
let l1 = out_gen (wit_list1 rawwit_ref) l in
let fst, l2 = match l1 with [] -> assert false | fst ::l2 -> fst, l2 in
CT_inline(CT_id_ne_list(loc_qualid_to_ct_ID fst,
List.map loc_qualid_to_ct_ID l2))
| VernacExtend("ExtractionNoInline", [l]) ->
let l1 = out_gen (wit_list1 rawwit_ref) l in
let fst, l2 = match l1 with [] -> assert false | fst ::l2 -> fst, l2 in
CT_no_inline(CT_id_ne_list(loc_qualid_to_ct_ID fst,
List.map loc_qualid_to_ct_ID l2))
| VernacExtend("Field",
[fth;ainv;ainvl;div]) ->
(match List.map (fun v -> xlate_formula(out_gen rawwit_constr v))
[fth;ainv;ainvl]
with
[fth1;ainv1;ainvl1] ->
let adiv1 =
xlate_formula_opt (out_gen (wit_opt rawwit_constr) div) in
CT_add_field(fth1, ainv1, ainvl1, adiv1)
|_ -> assert false)
| VernacExtend ("HintRewrite", o::f::([b]|[_;b] as args)) ->
let orient = out_gen Extraargs.rawwit_orient o in
let formula_list = out_gen (wit_list1 rawwit_constr) f in
let base = out_gen rawwit_pre_ident b in
let t =
match args with [t;_] -> out_gen rawwit_main_tactic t | _ -> TacId []
in
let ct_orient = match orient with
| true -> CT_lr
| false -> CT_rl in
let f_ne_list = match List.map xlate_formula formula_list with
(fst::rest) -> CT_formula_ne_list(fst,rest)
| _ -> assert false in
CT_hintrewrite(ct_orient, f_ne_list, CT_ident base, xlate_tactic t)
| VernacHints (local,dbnames,h) ->
let dblist = CT_id_list(List.map (fun x -> CT_ident x) dbnames) in
(match h with
| HintsConstructors l ->
let n1, names = match List.map tac_qualid_to_ct_ID l with
n1 :: names -> n1, names
| _ -> failwith "" in
if local then
CT_local_hints(CT_ident "Constructors",
CT_id_ne_list(n1, names), dblist)
else
CT_hints(CT_ident "Constructors",
CT_id_ne_list(n1, names), dblist)
| HintsExtern (n, c, t) ->
CT_hint_extern(CT_int n, xlate_formula c, xlate_tactic t, dblist)
| HintsImmediate l ->
let f1, formulas = match List.map xlate_formula l with
a :: tl -> a, tl
| _ -> failwith "" in
let l' = CT_formula_ne_list(f1, formulas) in
if local then
(match h with
HintsResolve _ ->
CT_local_hints_resolve(l', dblist)
| HintsImmediate _ ->
CT_local_hints_immediate(l', dblist)
| _ -> assert false)
else
(match h with
HintsResolve _ -> CT_hints_resolve(l', dblist)
| HintsImmediate _ -> CT_hints_immediate(l', dblist)
| _ -> assert false)
| HintsResolve l ->
let f1, formulas = match List.map xlate_formula (List.map snd l) with
a :: tl -> a, tl
| _ -> failwith "" in
let l' = CT_formula_ne_list(f1, formulas) in
if local then
(match h with
HintsResolve _ ->
CT_local_hints_resolve(l', dblist)
| HintsImmediate _ ->
CT_local_hints_immediate(l', dblist)
| _ -> assert false)
else
(match h with
HintsResolve _ -> CT_hints_resolve(l', dblist)
| HintsImmediate _ -> CT_hints_immediate(l', dblist)
| _ -> assert false)
| HintsUnfold l ->
let n1, names = match List.map loc_qualid_to_ct_ID l with
n1 :: names -> n1, names
| _ -> failwith "" in
if local then
CT_local_hints(CT_ident "Unfold",
CT_id_ne_list(n1, names), dblist)
else
CT_hints(CT_ident "Unfold", CT_id_ne_list(n1, names), dblist)
| HintsDestruct(id, n, loc, f, t) ->
let dl = match loc with
ConclLocation() -> CT_conclusion_location
| HypLocation true -> CT_discardable_hypothesis
| HypLocation false -> CT_hypothesis_location in
if local then
CT_local_hint_destruct
(xlate_ident id, CT_int n,
dl, xlate_formula f, xlate_tactic t, dblist)
else
CT_hint_destruct
(xlate_ident id, CT_int n, dl, xlate_formula f,
xlate_tactic t, dblist)
)
| VernacEndProof (Proved (true,None)) ->
CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Theorem"), ctv_ID_OPT_NONE)
| VernacEndProof (Proved (false,None)) ->
CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Definition"), ctv_ID_OPT_NONE)
| VernacEndProof (Proved (b,Some ((_,s), Some kind))) ->
CT_save (CT_coerce_THM_to_THM_OPT (xlate_thm kind),
ctf_ID_OPT_SOME (xlate_ident s))
| VernacEndProof (Proved (b,Some ((_,s),None))) ->
CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Theorem"),
ctf_ID_OPT_SOME (xlate_ident s))
| VernacEndProof Admitted ->
CT_save (CT_coerce_THM_to_THM_OPT (CT_thm "Admitted"), ctv_ID_OPT_NONE)
| VernacSetOpacity (_,l) ->
CT_strategy(CT_level_list
(List.map (fun (l,q) ->
(level_to_ct_LEVEL l,
CT_id_list(List.map loc_qualid_to_ct_ID q))) l))
| VernacUndo n -> CT_undo (CT_coerce_INT_to_INT_OPT (CT_int n))
| VernacShow (ShowGoal nopt) -> CT_show_goal (xlate_int_opt nopt)
| VernacShow ShowNode -> CT_show_node
| VernacShow ShowProof -> CT_show_proof
| VernacShow ShowTree -> CT_show_tree
| VernacShow ShowProofNames -> CT_show_proofs
| VernacShow (ShowIntros true) -> CT_show_intros
| VernacShow (ShowIntros false) -> CT_show_intro
| VernacShow (ShowGoalImplicitly None) -> CT_show_implicit (CT_int 1)
| VernacShow (ShowGoalImplicitly (Some n)) -> CT_show_implicit (CT_int n)
| VernacShow ShowExistentials -> CT_show_existentials
| VernacShow ShowScript -> CT_show_script
| VernacShow(ShowMatch _) -> xlate_error "TODO: VernacShow(ShowMatch _)"
| VernacShow(ShowThesis) -> xlate_error "TODO: VernacShow(ShowThesis _)"
| VernacGo arg -> CT_go (xlate_locn arg)
| VernacShow (ExplainProof l) -> CT_explain_proof (nums_to_int_list l)
| VernacShow (ExplainTree l) ->
CT_explain_prooftree (nums_to_int_list l)
| VernacCheckGuard -> CT_guarded
| VernacPrint p ->
(match p with
PrintFullContext -> CT_print_all
| PrintName id -> CT_print_id (loc_qualid_to_ct_ID id)
| PrintOpaqueName id -> CT_print_opaqueid (loc_qualid_to_ct_ID id)
| PrintSectionContext id -> CT_print_section (loc_qualid_to_ct_ID id)
| PrintModules -> CT_print_modules
| PrintGrammar name -> CT_print_grammar CT_grammar_none
| PrintHintDb -> CT_print_hintdb (CT_coerce_STAR_to_ID_OR_STAR CT_star)
| PrintHintDbName id ->
CT_print_hintdb (CT_coerce_ID_to_ID_OR_STAR (CT_ident id))
| PrintRewriteHintDbName id ->
CT_print_rewrite_hintdb (CT_ident id)
| PrintHint id ->
CT_print_hint (CT_coerce_ID_to_ID_OPT (loc_qualid_to_ct_ID id))
| PrintHintGoal -> CT_print_hint ctv_ID_OPT_NONE
| PrintLoadPath -> CT_print_loadpath
| PrintMLLoadPath -> CT_ml_print_path
| PrintMLModules -> CT_ml_print_modules
| PrintGraph -> CT_print_graph
| PrintClasses -> CT_print_classes
| PrintLtac qid -> CT_print_ltac (loc_qualid_to_ct_ID qid)
| PrintCoercions -> CT_print_coercions
| PrintCoercionPaths (id1, id2) ->
CT_print_path (xlate_class id1, xlate_class id2)
| PrintCanonicalConversions ->
xlate_error "TODO: Print Canonical Structures"
| PrintAssumptions _ ->
xlate_error "TODO: Print Needed Assumptions"
| PrintInstances _ ->
xlate_error "TODO: Print Instances"
| PrintTypeClasses ->
xlate_error "TODO: Print TypeClasses"
| PrintInspect n -> CT_inspect (CT_int n)
| PrintUniverses opt_s -> CT_print_universes(ctf_STRING_OPT opt_s)
| PrintSetoids -> CT_print_setoids
| PrintTables -> CT_print_tables
| PrintModuleType a -> CT_print_module_type (loc_qualid_to_ct_ID a)
| PrintModule a -> CT_print_module (loc_qualid_to_ct_ID a)
| PrintScopes -> CT_print_scopes
| PrintScope id -> CT_print_scope (CT_ident id)
| PrintVisibility id_opt ->
CT_print_visibility
(match id_opt with
Some id -> CT_coerce_ID_to_ID_OPT(CT_ident id)
| None -> ctv_ID_OPT_NONE)
| PrintAbout qid -> CT_print_about(loc_qualid_to_ct_ID qid)
| PrintImplicit qid -> CT_print_implicit(loc_qualid_to_ct_ID qid))
| VernacBeginSection (_,id) ->
CT_coerce_SECTION_BEGIN_to_COMMAND (CT_section (xlate_ident id))
| VernacEndSegment (_,id) -> CT_section_end (xlate_ident id)
| VernacStartTheoremProof (k, [Some (_,s), (bl,c)], _, _) ->
CT_coerce_THEOREM_GOAL_to_COMMAND(
CT_theorem_goal (CT_coerce_THM_to_DEFN_OR_THM (xlate_thm k), xlate_ident s,
xlate_binder_list bl, xlate_formula c))
| VernacStartTheoremProof _ ->
xlate_error "TODO: Mutually dependent theorems"
| VernacSuspend -> CT_suspend
| VernacResume idopt -> CT_resume (xlate_ident_opt (Option.map snd idopt))
| VernacDefinition (k,(_,s),ProveBody (bl,typ),_) ->
CT_coerce_THEOREM_GOAL_to_COMMAND
(CT_theorem_goal
(CT_coerce_DEFN_to_DEFN_OR_THM (xlate_defn k),
xlate_ident s, xlate_binder_list bl, xlate_formula typ))
| VernacDefinition (kind,(_,s),DefineBody(bl,red_option,c,typ_opt),_) ->
CT_definition
(xlate_defn kind, xlate_ident s, xlate_binder_list bl,
cvt_optional_eval_for_definition c red_option,
xlate_formula_opt typ_opt)
| VernacAssumption (kind,inline ,b) ->xlate_error "TODO: Parameter Inline"
(*inline : bool -> automatic delta reduction at fonctor application*)
(* CT_variable (xlate_var kind, cvt_vernac_binders b)*)
| VernacCheckMayEval (None, numopt, c) ->
CT_check (xlate_formula c)
| VernacSearch (s,x) ->
let translated_restriction = xlate_search_restr x in
(match s with
| SearchPattern c ->
CT_search_pattern(xlate_formula c, translated_restriction)
| SearchHead id ->
CT_search(loc_qualid_to_ct_ID id, translated_restriction)
| SearchRewrite c ->
CT_search_rewrite(xlate_formula c, translated_restriction)
| SearchAbout (a::l) ->
let xlate_search_about_item it =
match it with
SearchRef x ->
CT_coerce_ID_to_ID_OR_STRING(loc_qualid_to_ct_ID x)
| SearchString s ->
CT_coerce_STRING_to_ID_OR_STRING(CT_string s) in
CT_search_about
(CT_id_or_string_ne_list(xlate_search_about_item a,
List.map xlate_search_about_item l),
translated_restriction)
| SearchAbout [] -> assert false)
| (*Record from tactics/Record.v *)
VernacRecord
(_, (add_coercion, (_,s)), binders, c1,
rec_constructor_or_none, field_list) ->
let record_constructor =
xlate_ident_opt (Option.map snd rec_constructor_or_none) in
CT_record
((if add_coercion then CT_coercion_atm else
CT_coerce_NONE_to_COERCION_OPT(CT_none)),
xlate_ident s, xlate_binder_list binders,
xlate_formula c1, record_constructor,
build_record_field_list field_list)
| VernacInductive (isind, lmi) ->
let co_or_ind = if isind then "Inductive" else "CoInductive" in
let strip_mutind (((_,s), parameters, c, constructors), notopt) =
CT_ind_spec
(xlate_ident s, xlate_binder_list parameters, xlate_formula c,
build_constructors constructors,
translate_opt_notation_decl notopt) in
CT_mind_decl
(CT_co_ind co_or_ind, CT_ind_spec_list (List.map strip_mutind lmi))
| VernacFixpoint ([],_) -> xlate_error "mutual recursive"
| VernacFixpoint ((lm :: lmi),boxed) ->
let strip_mutrec (((_,fid), (n, ro), bl, arf, ardef), _ntn) =
let struct_arg = make_fix_struct (n, bl) in
let arf = xlate_formula arf in
let ardef = xlate_formula ardef in
match xlate_binder_list bl with
| CT_binder_list (b :: bl) ->
CT_fix_rec (xlate_ident fid, CT_binder_ne_list (b, bl),
struct_arg, arf, ardef)
| _ -> xlate_error "mutual recursive" in
CT_fix_decl
(CT_fix_rec_list (strip_mutrec lm, List.map strip_mutrec lmi))
| VernacCoFixpoint ([],boxed) -> xlate_error "mutual corecursive"
| VernacCoFixpoint ((lm :: lmi),boxed) ->
let strip_mutcorec (((_,fid), bl, arf, ardef), _ntn) =
CT_cofix_rec (xlate_ident fid, xlate_binder_list bl,
xlate_formula arf, xlate_formula ardef) in
CT_cofix_decl
(CT_cofix_rec_list (strip_mutcorec lm, List.map strip_mutcorec lmi))
| VernacScheme [] -> xlate_error "induction scheme"
| VernacScheme (lm :: lmi) ->
let strip_ind = function
| (Some (_,id), InductionScheme (depstr, inde, sort)) ->
CT_scheme_spec
(xlate_ident id, xlate_dep depstr,
CT_coerce_ID_to_FORMULA (loc_qualid_to_ct_ID inde),
xlate_sort sort)
| (None, InductionScheme (depstr, inde, sort)) ->
CT_scheme_spec
(xlate_ident (id_of_string ""), xlate_dep depstr,
CT_coerce_ID_to_FORMULA (loc_qualid_to_ct_ID inde),
xlate_sort sort)
| (_, EqualityScheme _) -> xlate_error "TODO: Scheme Equality" in
CT_ind_scheme
(CT_scheme_spec_list (strip_ind lm, List.map strip_ind lmi))
| VernacCombinedScheme _ -> xlate_error "TODO: Combined Scheme"
| VernacSyntacticDefinition ((_,id), ([],c), false, _) ->
CT_syntax_macro (xlate_ident id, xlate_formula c, xlate_int_opt None)
| VernacSyntacticDefinition ((_,id), _, _, _) ->
xlate_error"TODO: Local abbreviations and abbreviations with parameters"
(* Modules and Module Types *)
| VernacInclude (_) -> xlate_error "TODO : Include "
| VernacDeclareModuleType((_, id), bl, mty_o) ->
CT_module_type_decl(xlate_ident id,
xlate_module_binder_list bl,
match mty_o with
None ->
CT_coerce_ID_OPT_to_MODULE_TYPE_OPT
ctv_ID_OPT_NONE
| Some mty1 ->
CT_coerce_MODULE_TYPE_to_MODULE_TYPE_OPT
(xlate_module_type mty1))
| VernacDefineModule(_,(_, id), bl, mty_o, mexpr_o) ->
CT_module(xlate_ident id,
xlate_module_binder_list bl,
xlate_module_type_check_opt mty_o,
match mexpr_o with
None -> CT_coerce_ID_OPT_to_MODULE_EXPR ctv_ID_OPT_NONE
| Some m -> xlate_module_expr m)
| VernacDeclareModule(_,(_, id), bl, mty_o) ->
CT_declare_module(xlate_ident id,
xlate_module_binder_list bl,
xlate_module_type_check_opt (Some mty_o),
CT_coerce_ID_OPT_to_MODULE_EXPR ctv_ID_OPT_NONE)
| VernacRequire (impexp, spec, id::idl) ->
let ct_impexp, ct_spec = get_require_flags impexp spec in
CT_require (ct_impexp, ct_spec,
CT_coerce_ID_NE_LIST_to_ID_NE_LIST_OR_STRING(
CT_id_ne_list(loc_qualid_to_ct_ID id,
List.map loc_qualid_to_ct_ID idl)))
| VernacRequire (_,_,[]) ->
xlate_error "Require should have at least one id argument"
| VernacRequireFrom (impexp, spec, filename) ->
let ct_impexp, ct_spec = get_require_flags impexp spec in
CT_require(ct_impexp, ct_spec,
CT_coerce_STRING_to_ID_NE_LIST_OR_STRING(CT_string filename))
| VernacOpenCloseScope(true, true, s) -> CT_local_open_scope(CT_ident s)
| VernacOpenCloseScope(false, true, s) -> CT_open_scope(CT_ident s)
| VernacOpenCloseScope(true, false, s) -> CT_local_close_scope(CT_ident s)
| VernacOpenCloseScope(false, false, s) -> CT_close_scope(CT_ident s)
| VernacArgumentsScope(true, qid, l) ->
CT_arguments_scope(loc_qualid_to_ct_ID qid,
CT_id_opt_list
(List.map
(fun x ->
match x with
None -> ctv_ID_OPT_NONE
| Some x -> ctf_ID_OPT_SOME(CT_ident x)) l))
| VernacArgumentsScope(false, qid, l) ->
xlate_error "TODO: Arguments Scope Global"
| VernacDelimiters(s1,s2) -> CT_delim_scope(CT_ident s1, CT_ident s2)
| VernacBindScope(id, a::l) ->
let xlate_class_rawexpr = function
FunClass -> CT_ident "Funclass" | SortClass -> CT_ident "Sortclass"
| RefClass qid -> loc_qualid_to_ct_ID qid in
CT_bind_scope(CT_ident id,
CT_id_ne_list(xlate_class_rawexpr a,
List.map xlate_class_rawexpr l))
| VernacBindScope(id, []) -> assert false
| VernacNotation(b, c, (s,modif_list), opt_scope) ->
let translated_s = CT_string s in
let formula = xlate_formula c in
let translated_modif_list =
CT_modifier_list(List.map xlate_syntax_modifier modif_list) in
let translated_scope = match opt_scope with
None -> ctv_ID_OPT_NONE
| Some x -> ctf_ID_OPT_SOME(CT_ident x) in
if b then
CT_local_define_notation
(translated_s, formula, translated_modif_list, translated_scope)
else
CT_define_notation(translated_s, formula,
translated_modif_list, translated_scope)
| VernacSyntaxExtension(b,(s,modif_list)) ->
let translated_s = CT_string s in
let translated_modif_list =
CT_modifier_list(List.map xlate_syntax_modifier modif_list) in
if b then
CT_local_reserve_notation(translated_s, translated_modif_list)
else
CT_reserve_notation(translated_s, translated_modif_list)
| VernacInfix (b,(str,modl),id, opt_scope) ->
let id1 = loc_qualid_to_ct_ID id in
let modl1 = CT_modifier_list(List.map xlate_syntax_modifier modl) in
let s = CT_string str in
let translated_scope = match opt_scope with
None -> ctv_ID_OPT_NONE
| Some x -> ctf_ID_OPT_SOME(CT_ident x) in
if b then
CT_local_infix(s, id1,modl1, translated_scope)
else
CT_infix(s, id1,modl1, translated_scope)
| VernacCoercion (s, id1, id2, id3) ->
let id_opt = CT_coerce_NONE_to_IDENTITY_OPT CT_none in
let local_opt =
match s with
(* Cannot decide whether it is a global or a Local but at toplevel *)
| Global -> CT_coerce_NONE_to_LOCAL_OPT CT_none
| Local -> CT_local in
CT_coercion (local_opt, id_opt, loc_qualid_to_ct_ID id1,
xlate_class id2, xlate_class id3)
| VernacIdentityCoercion (s, (_,id1), id2, id3) ->
let id_opt = CT_identity in
let local_opt =
match s with
(* Cannot decide whether it is a global or a Local but at toplevel *)
| Global -> CT_coerce_NONE_to_LOCAL_OPT CT_none
| Local -> CT_local in
CT_coercion (local_opt, id_opt, xlate_ident id1,
xlate_class id2, xlate_class id3)
(* Type Classes *)
| VernacDeclareInstance _|VernacContext _|
VernacInstance (_, _, _, _, _)|VernacClass (_, _, _, _, _) ->
xlate_error "TODO: Type Classes commands"
| VernacResetName id -> CT_reset (xlate_ident (snd id))
| VernacResetInitial -> CT_restore_state (CT_ident "Initial")
| VernacExtend (s, l) ->
CT_user_vernac
(CT_ident s, CT_varg_list (List.map coerce_genarg_to_VARG l))
| VernacList((_, a)::l) ->
CT_coerce_COMMAND_LIST_to_COMMAND
(CT_command_list(xlate_vernac a,
List.map (fun (_, x) -> xlate_vernac x) l))
| VernacList([]) -> assert false
| VernacNop -> CT_proof_no_op
| VernacComments l ->
CT_scomments(CT_scomment_content_list (List.map xlate_comment l))
| VernacDeclareImplicits(true, id, opt_positions) ->
CT_implicits
(reference_to_ct_ID id,
match opt_positions with
None -> CT_coerce_NONE_to_ID_LIST_OPT CT_none
| Some l ->
CT_coerce_ID_LIST_to_ID_LIST_OPT
(CT_id_list
(List.map
(function ExplByPos (x,_), _, _
-> xlate_error
"explication argument by rank is obsolete"
| ExplByName id, _, _ -> CT_ident (string_of_id id)) l)))
| VernacDeclareImplicits(false, id, opt_positions) ->
xlate_error "TODO: Implicit Arguments Global"
| VernacReserve((_,a)::l, f) ->
CT_reserve(CT_id_ne_list(xlate_ident a,
List.map (fun (_,x) -> xlate_ident x) l),
xlate_formula f)
| VernacReserve([], _) -> assert false
| VernacLocate(LocateTerm id) -> CT_locate(reference_to_ct_ID id)
| VernacLocate(LocateLibrary id) -> CT_locate_lib(reference_to_ct_ID id)
| VernacLocate(LocateModule _) -> xlate_error "TODO: Locate Module"
| VernacLocate(LocateFile s) -> CT_locate_file(CT_string s)
| VernacLocate(LocateNotation s) -> CT_locate_notation(CT_string s)
| VernacTime(v) -> CT_time(xlate_vernac v)
| VernacSetOption (Goptions.SecondaryTable ("Implicit", "Arguments"), BoolValue true)->CT_user_vernac (CT_ident "IMPLICIT_ARGS_ON", CT_varg_list[])
|VernacExactProof f -> CT_proof(xlate_formula f)
| VernacSetOption (table, BoolValue true) ->
let table1 =
match table with
PrimaryTable(s) -> CT_coerce_ID_to_TABLE(CT_ident s)
| SecondaryTable(s1,s2) -> CT_table(CT_ident s1, CT_ident s2)
| TertiaryTable(s1,s2,s3) -> xlate_error "TODO: TertiaryTable" in
CT_set_option(table1)
| VernacSetOption (table, v) ->
let table1 =
match table with
PrimaryTable(s) -> CT_coerce_ID_to_TABLE(CT_ident s)
| SecondaryTable(s1,s2) -> CT_table(CT_ident s1, CT_ident s2)
| TertiaryTable(s1,s2,s3) -> xlate_error "TODO: TertiaryTable" in
let value =
match v with
| BoolValue _ -> assert false
| StringValue s ->
CT_coerce_STRING_to_SINGLE_OPTION_VALUE(CT_string s)
| IntValue n ->
CT_coerce_INT_to_SINGLE_OPTION_VALUE(CT_int n) in
CT_set_option_value(table1, value)
| VernacUnsetOption(table) ->
let table1 =
match table with
PrimaryTable(s) -> CT_coerce_ID_to_TABLE(CT_ident s)
| SecondaryTable(s1,s2) -> CT_table(CT_ident s1, CT_ident s2)
| TertiaryTable(s1,s2,s3) -> xlate_error "TODO: TertiaryTable" in
CT_unset_option(table1)
| VernacAddOption (table, l) ->
let values =
List.map
(function
| QualidRefValue x ->
CT_coerce_ID_to_ID_OR_STRING(loc_qualid_to_ct_ID x)
| StringRefValue x ->
CT_coerce_STRING_to_ID_OR_STRING(CT_string x)) l in
let fst, values1 =
match values with [] -> assert false | a::b -> (a,b) in
let table1 =
match table with
PrimaryTable(s) -> CT_coerce_ID_to_TABLE(CT_ident s)
| SecondaryTable(s1,s2) -> CT_table(CT_ident s1, CT_ident s2)
| TertiaryTable(s1,s2,s3) -> xlate_error "TODO: TertiaryTable" in
CT_set_option_value2(table1, CT_id_or_string_ne_list(fst, values1))
| VernacImport(true, a::l) ->
CT_export_id(CT_id_ne_list(reference_to_ct_ID a,
List.map reference_to_ct_ID l))
| VernacImport(false, a::l) ->
CT_import_id(CT_id_ne_list(reference_to_ct_ID a,
List.map reference_to_ct_ID l))
| VernacImport(_, []) -> assert false
| VernacProof t -> CT_proof_with(xlate_tactic t)
| (VernacGlobalCheck _|VernacPrintOption _|
VernacMemOption (_, _)|VernacRemoveOption (_, _)
| VernacBack _ | VernacBacktrack _ |VernacBackTo _|VernacRestoreState _| VernacWriteState _|
VernacSolveExistential (_, _)|VernacCanonical _ |
VernacTacticNotation _ | VernacUndoTo _ | VernacRemoveName _)
-> xlate_error "TODO: vernac"
and level_to_ct_LEVEL = function
Conv_oracle.Opaque -> CT_Opaque
| Conv_oracle.Level n -> CT_Level (CT_int n)
| Conv_oracle.Expand -> CT_Expand;;
let rec xlate_vernac_list =
function
| VernacList (v::l) ->
CT_command_list
(xlate_vernac (snd v), List.map (fun (_,x) -> xlate_vernac x) l)
| VernacList [] -> xlate_error "xlate_command_list"
| _ -> xlate_error "Not a list of commands";;
|