1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
(* This file contains an ml version of drag-and-drop. *)
(* #use "/net/home/bertot/experiments/pcoq/src/dad/dad.ml" *)
open Names;;
open Term;;
open Rawterm;;
open Util;;
open Environ;;
open Tactics;;
open Tacticals;;
open Pattern;;
open Matching;;
open Reduction;;
open Constrextern;;
open Constrintern;;
open Vernacinterp;;
open Libnames;;
open Nametab
open Proof_type;;
open Proof_trees;;
open Tacmach;;
open Typing;;
open Pp;;
open Paths;;
open Topconstr;;
open Genarg;;
open Tacexpr;;
open Rawterm;;
(* In a first approximation, drag-and-drop rules are like in CtCoq
1/ a pattern,
2,3/ Two paths: start and end positions,
4/ the degree: the number of steps the algorithm should go up from the
longest common prefix,
5/ the tail path: the suffix of the longest common prefix of length the
degree,
6/ the command pattern, where meta variables are represented by objects
of the form Node(_,"META"; [Num(_,i)])
*)
type dad_rule =
constr_expr * int list * int list * int * int list
* raw_atomic_tactic_expr;;
(* This value will be used systematically when constructing objects *)
let zz = Util.dummy_loc;;
(* This function receives a length n, a path p, and a term and returns a
couple whose first component is the subterm designated by the prefix
of p of length n, and the second component is the rest of the path *)
let rec get_subterm (depth:int) (path: int list) (constr:constr) =
match depth, path, kind_of_term constr with
0, l, c -> (constr,l)
| n, 2::a::tl, App(func,arr) ->
get_subterm (n - 2) tl arr.(a-1)
| _,l,_ -> failwith (int_list_to_string
"wrong path or wrong form of term"
l);;
(* This function maps a substitution on an abstract syntax tree. The
first argument, an object of type env, is necessary to
transform constr terms into abstract syntax trees. The second argument is
the substitution, a list of pairs linking an integer and a constr term. *)
let rec map_subst (env :env) (subst:patvar_map) = function
| CPatVar (_,(_,i)) ->
let constr = List.assoc i subst in
extern_constr false env constr
| x -> map_constr_expr_with_binders (fun _ x -> x) (map_subst env) subst x;;
let map_subst_tactic env subst = function
| TacExtend (loc,("Rewrite" as x),[b;cbl]) ->
let c,bl = out_gen rawwit_constr_with_bindings cbl in
assert (bl = NoBindings);
let c = (map_subst env subst c,NoBindings) in
TacExtend (loc,x,[b;in_gen rawwit_constr_with_bindings c])
| _ -> failwith "map_subst_tactic: unsupported tactic"
(* This function is really the one that is important. *)
let rec find_cmd (l:(string * dad_rule) list) env constr p p1 p2 =
match l with
[] -> failwith "nothing happens"
| (name, (pat, p_f, p_l, deg, p_r, cmd))::tl ->
let length = List.length p in
try
if deg > length then
failwith "internal"
else
let term_to_match, p_r =
try
get_subterm (length - deg) p constr
with
Failure s -> failwith "internal" in
let _, constr_pat =
interp_constrpattern Evd.empty (Global.env())
((*ct_to_ast*) pat) in
let subst = matches constr_pat term_to_match in
if (is_prefix p_f (p_r@p1)) & (is_prefix p_l (p_r@p2)) then
TacAtom (zz, map_subst_tactic env subst cmd)
else
failwith "internal"
with
Failure "internal" -> find_cmd tl env constr p p1 p2
| PatternMatchingFailure -> find_cmd tl env constr p p1 p2;;
let dad_rule_list = ref ([]: (string * dad_rule) list);;
(*
(* \\ This function is also used in pbp. *)
let rec tactic_args_to_ints = function
[] -> []
| (Integer n)::l -> n::(tactic_args_to_ints l)
| _ -> failwith "expecting only numbers";;
(* We assume that the two lists of integers for the tactic are simply
given in one list, separated by a dummy tactic. *)
let rec part_tac_args l = function
[] -> l,[]
| (Tacexp a)::tl -> l, (tactic_args_to_ints tl)
| (Integer n)::tl -> part_tac_args (n::l) tl
| _ -> failwith "expecting only numbers and the word \"to\"";;
(* The dad_tac tactic takes a display_function as argument. This makes
it possible to use it in pcoq, but also in other contexts, just by
changing the output routine. *)
let dad_tac display_function = function
l -> let p1, p2 = part_tac_args [] l in
(function g ->
let (p_a, p1prime, p2prime) = decompose_path (List.rev p1,p2) in
(display_function
(find_cmd (!dad_rule_list) (pf_env g)
(pf_concl g) p_a p1prime p2prime));
tclIDTAC g);;
*)
let dad_tac display_function p1 p2 g =
let (p_a, p1prime, p2prime) = decompose_path (p1,p2) in
(display_function
(find_cmd (!dad_rule_list) (pf_env g) (pf_concl g) p_a p1prime p2prime));
tclIDTAC g;;
(* Now we enter dad rule list management. *)
let add_dad_rule name patt p1 p2 depth pr command =
dad_rule_list := (name,
(patt, p1, p2, depth, pr, command))::!dad_rule_list;;
let rec remove_if_exists name = function
[] -> false, []
| ((a,b) as rule1)::tl -> if a = name then
let result1, l = (remove_if_exists name tl) in
true, l
else
let result1, l = remove_if_exists name tl in
result1, (rule1::l);;
let remove_dad_rule name =
let result1, result2 = remove_if_exists name !dad_rule_list in
if result1 then
failwith("No such name among the drag and drop rules " ^ name)
else
dad_rule_list := result2;;
let dad_rule_names () =
List.map (function (s,_) -> s) !dad_rule_list;;
(* this function is inspired from matches_core in pattern.ml *)
let constrain ((n : patvar),(pat : constr_pattern)) sigma =
if List.mem_assoc n sigma then
if pat = (List.assoc n sigma) then sigma
else failwith "internal"
else
(n,pat)::sigma
(* This function is inspired from matches_core in pattern.ml *)
let more_general_pat pat1 pat2 =
let rec match_rec sigma p1 p2 =
match p1, p2 with
| PMeta (Some n), m -> constrain (n,m) sigma
| PMeta None, m -> sigma
| PRef (VarRef sp1), PRef(VarRef sp2) when sp1 = sp2 -> sigma
| PVar v1, PVar v2 when v1 = v2 -> sigma
| PRef ref1, PRef ref2 when ref1 = ref2 -> sigma
| PRel n1, PRel n2 when n1 = n2 -> sigma
| PSort (RProp c1), PSort (RProp c2) when c1 = c2 -> sigma
| PSort (RType _), PSort (RType _) -> sigma
| PApp (c1,arg1), PApp (c2,arg2) ->
(try array_fold_left2 match_rec (match_rec sigma c1 c2) arg1 arg2
with Invalid_argument _ -> failwith "internal")
| _ -> failwith "unexpected case in more_general_pat" in
try let _ = match_rec [] pat1 pat2 in true
with Failure "internal" -> false;;
let more_general r1 r2 =
match r1,r2 with
(_,(patt1,p11,p12,_,_,_)),
(_,(patt2,p21,p22,_,_,_)) ->
(more_general_pat patt1 patt2) &
(is_prefix p11 p21) & (is_prefix p12 p22);;
let not_less_general r1 r2 =
not (match r1,r2 with
(_,(patt1,p11,p12,_,_,_)),
(_,(patt2,p21,p22,_,_,_)) ->
(more_general_pat patt1 patt2) &
(is_prefix p21 p11) & (is_prefix p22 p12));;
let rec add_in_list_sorting rule1 = function
[] -> [rule1]
| (b::tl) as this_list ->
if more_general rule1 b then
b::(add_in_list_sorting rule1 tl)
else if not_less_general rule1 b then
let tl2 = add_in_list_sorting_aux rule1 tl in
(match tl2 with
[] -> rule1::this_list
| _ -> b::tl2)
else
rule1::this_list
and add_in_list_sorting_aux rule1 = function
[] -> []
| b::tl ->
if more_general rule1 b then
b::(add_in_list_sorting rule1 tl)
else
let tl2 = add_in_list_sorting_aux rule1 tl in
(match tl2 with
[] -> []
| _ -> rule1::tl2);;
let rec sort_list = function
[] -> []
| a::l -> add_in_list_sorting a (sort_list l);;
let mk_dad_meta n = CPatVar (zz,(true,Nameops.make_ident "DAD" (Some n)));;
let mk_rewrite lr ast =
let b = in_gen rawwit_bool lr in
let cb = in_gen rawwit_constr_with_bindings (ast,NoBindings) in
TacExtend (zz,"Rewrite",[b;cb])
open Vernacexpr
let dad_status = ref false;;
let start_dad () = dad_status := true;;
let add_dad_rule_fn name pat p1 p2 tac =
let pr = match decompose_path (p1, p2) with pr, _, _ -> pr in
add_dad_rule name pat p1 p2 (List.length pr) pr tac;;
(* To be parsed by camlp4
(*i camlp4deps: "parsing/grammar.cma" i*)
VERNAC COMMAND EXTEND AddDadRule
[ "Add" "Dad" "Rule" string(name) constr(pat)
"From" natural_list(p1) "To" natural_list(p2) tactic(tac) ] ->
[ add_dad_rule_fn name pat p1 p2 tac ]
END
*)
let mk_id s = mkIdentC (id_of_string s);;
let mkMetaC = mk_dad_meta;;
add_dad_rule "distributivity-inv"
(mkAppC(mk_id("mult"),[mkAppC(mk_id("plus"),[mkMetaC(4);mkMetaC(3)]);mkMetaC(2)]))
[2; 2]
[2; 1]
1
[2]
(mk_rewrite true (mkAppC(mk_id( "mult_plus_distr"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
add_dad_rule "distributivity1-r"
(mkAppC(mk_id("plus"),[mkAppC(mk_id("mult"),[mkMetaC(4);mkMetaC(2)]);mkAppC(mk_id("mult"),[mkMetaC(3);mkMetaC(2)])]))
[2; 2; 2; 2]
[]
0
[]
(mk_rewrite false (mkAppC(mk_id("mult_plus_distr"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
add_dad_rule "distributivity1-l"
(mkAppC(mk_id("plus"),[mkAppC(mk_id("mult"),[mkMetaC(4);mkMetaC(2)]);mkAppC(mk_id("mult"),[mkMetaC(3);mkMetaC(2)])]))
[2; 1; 2; 2]
[]
0
[]
(mk_rewrite false (mkAppC(mk_id( "mult_plus_distr"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
add_dad_rule "associativity"
(mkAppC(mk_id("plus"),[mkAppC(mk_id("plus"),[mkMetaC(4);mkMetaC(3)]);mkMetaC(2)]))
[2; 1]
[]
0
[]
(mk_rewrite true (mkAppC(mk_id( "plus_assoc_r"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
add_dad_rule "minus-identity-lr"
(mkAppC(mk_id("minus"),[mkMetaC(2);mkMetaC(2)]))
[2; 1]
[2; 2]
1
[2]
(mk_rewrite false (mkAppC(mk_id( "minus_n_n"),[(mk_dad_meta 2) ])));
add_dad_rule "minus-identity-rl"
(mkAppC(mk_id("minus"),[mkMetaC(2);mkMetaC(2)]))
[2; 2]
[2; 1]
1
[2]
(mk_rewrite false (mkAppC(mk_id( "minus_n_n"),[(mk_dad_meta 2) ])));
add_dad_rule "plus-sym-rl"
(mkAppC(mk_id("plus"),[mkMetaC(3);mkMetaC(2)]))
[2; 2]
[2; 1]
1
[2]
(mk_rewrite true (mkAppC(mk_id( "plus_sym"),[(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
add_dad_rule "plus-sym-lr"
(mkAppC(mk_id("plus"),[mkMetaC(3);mkMetaC(2)]))
[2; 1]
[2; 2]
1
[2]
(mk_rewrite true (mkAppC(mk_id( "plus_sym"),[(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
add_dad_rule "absorb-0-r-rl"
(mkAppC(mk_id("plus"),[mkMetaC(2);mk_id("O")]))
[2; 2]
[1]
0
[]
(mk_rewrite false (mkAppC(mk_id( "plus_n_O"),[(mk_dad_meta 2) ])));
add_dad_rule "absorb-0-r-lr"
(mkAppC(mk_id("plus"),[mkMetaC(2);mk_id("O")]))
[1]
[2; 2]
0
[]
(mk_rewrite false (mkAppC(mk_id( "plus_n_O"),[(mk_dad_meta 2) ])));
add_dad_rule "plus-permute-lr"
(mkAppC(mk_id("plus"),[mkMetaC(4);mkAppC(mk_id("plus"),[mkMetaC(3);mkMetaC(2)])]))
[2; 1]
[2; 2; 2; 1]
1
[2]
(mk_rewrite true (mkAppC(mk_id( "plus_permute"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));
add_dad_rule "plus-permute-rl"
(mkAppC(mk_id("plus"),[mkMetaC(4);mkAppC(mk_id("plus"),[mkMetaC(3);mkMetaC(2)])]))
[2; 2; 2; 1]
[2; 1]
1
[2]
(mk_rewrite true (mkAppC(mk_id( "plus_permute"),[(mk_dad_meta 4) ;(mk_dad_meta 3) ;(mk_dad_meta 2) ])));;
vinterp_add "StartDad"
(function
| [] ->
(function () -> start_dad())
| _ -> errorlabstrm "StartDad" (mt()));;
|