1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
|
(*i camlp4deps: "parsing/grammar.cma" i*)
(*s FunInv Tactic: inversion following the shape of a function. *)
(* Use:
\begin{itemize}
\item The Tacinv directory must be in the path (-I <path> option)
\item use the bytecode version of coqtop or coqc (-byte option), or make a
coqtop
\item Do [Require Tacinv] to be able to use it.
\item For syntax see Tacinv.v
\end{itemize}
*)
(*i*)
open Termops
open Equality
open Names
open Pp
open Tacmach
open Proof_type
open Tacinterp
open Tactics
open Tacticals
open Term
open Util
open Printer
open Reductionops
open Inductiveops
open Coqlib
open Refine
open Typing
open Declare
open Decl_kinds
open Safe_typing
open Vernacinterp
open Evd
open Environ
open Entries
open Setoid_replace
open Tacinvutils
(*i*)
module Smap = Map.Make(struct type t = constr let compare = compare end)
let smap_to_list m = Smap.fold (fun c cb l -> (c,cb)::l) m []
let merge_smap m1 m2 = Smap.fold (fun c cb m -> Smap.add c cb m) m1 m2
let rec listsuf i l = if i<=0 then l else listsuf (i-1) (List.tl l)
let rec listpref i l = if i<=0 then [] else List.hd l :: listpref (i-1) (List.tl l)
let mkthesort = mkProp (* would like to put Type here, but with which index? *)
(* this is the prefix used to name equality hypothesis generated by
case analysis*)
let equality_hyp_string = "_eg_"
(* bug de refine: on doit ssavoir sur quelle hypothese on se trouve. valeur
initiale au debut de l'appel a la fonction proofPrinc: 1. *)
let nthhyp = ref 1
(*debugging*)
(* let rewrules = ref [] *)
(*debugging*)
let debug i = prstr ("DEBUG "^ string_of_int i ^"\n")
let pr2constr = (fun c1 c2 -> prconstr c1; prstr " <---> "; prconstr c2)
(* Operations on names *)
let id_of_name = function
Anonymous -> id_of_string "H"
| Name id -> id;;
let string_of_name nme = string_of_id (id_of_name nme)
(*end debugging *)
let constr_of c = Constrintern.interp_constr Evd.empty (Global.env()) c
let rec collect_cases l =
match l with
| [||] -> [||],[],[],[||],[||],[]
| arr ->
let (a,c,d,f,e,g)= arr.(0) in
let aa,lc,ld,_,_,_ =
collect_cases (Array.sub arr 1 ((Array.length arr)-1)) in
Array.append [|a|] aa , (c@lc) , (d@ld) , f , e, g
let rec collect_pred l =
match l with
| [] -> [],[],[]
| (e1,e2,e3)::l' -> let a,b,c = collect_pred l' in (e1::a),(e2::b),(e3::c)
(*s specific manipulations on constr *)
let lift1_leqs leq=
List.map
(function (r,(typofg,g,d))
-> lift 1 r, (lift 1 typofg, lift 1 g , lift 1 d)) leq
let lift1_relleqs leq= List.map (function (r,x) -> lift 1 r,x) leq
(* WARNING: In the types, we don't lift the rels in the type. This is
intentional. Use with care. *)
let lift1_lvars lvars= List.map
(function x,(nme,c) -> lift 1 x, (nme, (*lift 1*) c)) lvars
let pop1_levar levars = List.map (function ev,tev -> ev, popn 1 tev) levars
let rec add_n_dummy_prod t n =
if n<=0 then t
else add_n_dummy_prod (mkNamedProd (id_of_string "DUMMY") mkthesort t) (n-1)
(* [add_lambdas t gl [csr1;csr2...]] returns [[x1:type of csr1]
[x2:type of csr2] t [csr <- x1 ...]], names of abstracted variables
are not specified *)
let rec add_lambdas t gl lcsr =
match lcsr with
| [] -> t
| csr::lcsr' ->
let hyp_csr,hyptyp = csr,(pf_type_of gl csr) in
lambda_id hyp_csr hyptyp (add_lambdas t gl lcsr')
(* [add_pis t gl [csr1;csr2...]] returns ([x1] :type of [csr1]
[x2]:type of csr2) [t]*)
let rec add_pis t gl lcsr =
match lcsr with
| [] -> t
| csr::lcsr' ->
let hyp_csr,hyptyp = csr,(pf_type_of gl csr) in
prod_id hyp_csr hyptyp (add_pis t gl lcsr')
let mkProdEg teq eql eqr concl =
mkProd (name_of_string "eg", mkEq teq eql eqr, lift 1 concl)
let eqs_of_beqs x =
List.map (function (_,(a,b,c)) -> (Anonymous, mkEq a b c)) x
let rec eqs_of_beqs_named_aux s i l =
match l with
| [] -> []
| (r,(a,b,c))::l' ->
(Name(id_of_string (s^ string_of_int i)), mkEq a b c)
::eqs_of_beqs_named_aux s (i-1) l'
let eqs_of_beqs_named s l = eqs_of_beqs_named_aux s (List.length l) l
let rec patternify ltypes c nme =
match ltypes with
| [] -> c
| (mv,t)::ltypes' ->
let c'= substitterm 0 mv (mkRel 1) c in
let tlift = lift (List.length ltypes') t in
let res =
patternify ltypes' (mkLambda (newname_append nme "rec", tlift, c')) nme in
res
let rec npatternify ltypes c =
match ltypes with
| [] -> c
| (mv,nme,t)::ltypes' ->
let c'= substitterm 0 mv (mkRel 1) c in
(* let _ = prconstr c' in *)
let tlift = lift (List.length ltypes') t in
let res =
npatternify ltypes' (mkLambda (newname_append nme "", tlift, c')) in
(* let _ = prconstr res in *)
res
let rec apply_levars c lmetav =
match lmetav with
| [] -> [],c
| (i,typ) :: lmetav' ->
let levars,trm = apply_levars c lmetav' in
let exkey = mknewexist() in
((exkey,typ)::levars), applistc trm [mkEvar exkey]
(* EXPERIMENT le refine est plus long si on met un cast:
((exkey,typ)::levars), mkCast ((applistc trm [mkEvar exkey]),typ) *)
let prod_change_concl c newconcl =
let lv,_ = decompose_prod c in prod_it newconcl lv
let lam_change_concl c newconcl =
let lv,_ = decompose_prod c in lam_it newconcl lv
let rec mkAppRel c largs n =
match largs with
| [] -> c
| arg::largs' ->
let newc = mkApp (c,[|(mkRel n)|]) in mkAppRel newc largs' (n-1)
let applFull c typofc =
let lv,t = decompose_prod typofc in
let ltyp = List.map fst lv in
let res = mkAppRel c ltyp (List.length ltyp) in
res
let rec build_rel_map typ type_of_b =
match (kind_of_term typ), (kind_of_term type_of_b) with
Evar _ , Evar _ -> Smap.empty
| Rel i, Rel j -> if i=j then Smap.empty
else Smap.add typ type_of_b Smap.empty
| Prod (name,c1,c2), Prod (nameb,c1b,c2b) ->
let map1 = build_rel_map c1 c1b in
let map2 = build_rel_map (pop c2) (pop c2b) in
merge_smap map1 map2
| App (f,args), App (fb,argsb) ->
(try build_rel_map_list (Array.to_list args) (Array.to_list argsb)
with Invalid_argument _ ->
failwith ("Could not generate case annotation. "^
"Two application with different length"))
| Const c1, Const c2 -> if c1=c2 then Smap.empty
else failwith ("Could not generate case annotation. "^
"Two different constants in a case annotation.")
| Ind c1, Ind c2 -> if c1=c2 then Smap.empty
else failwith ("Could not generate case annotation. "^
"Two different constants in a case annotation.")
| _,_ -> failwith ("Could not generate case annotation. "^
"Incompatibility between annotation and actual type")
and build_rel_map_list ltyp ltype_of_b =
List.fold_left2 (fun a b c -> merge_smap a (build_rel_map b c))
Smap.empty ltyp ltype_of_b
(*s Use (and proof) of the principle *)
(*
\begin {itemize}
\item [concl] ([constr]): conclusions, cad (xi:ti)gl, ou gl est le but a
prouver, et xi:ti correspondent aux arguments donnés à la tactique. On
enlève un produit à chaque fois qu'on rencontre un binder, sans lift ou pop.
Initialement: une seule conclusion, puis specifique a chaque branche.
\item[absconcl] ([constr array]): les conclusions (un predicat pour chaque
fixp. mutuel) patternisées pour pouvoir être appliquées.
\item [mimick] ([constr]): le terme qu'on imite. On plonge dedans au fur et
à mesure, sans lift ni pop.
\item [nmefonc] ([constr array]): la constante correspondant à la fonction
appelée, permet de remplacer les appels recursifs par des appels à la
constante correspondante (non pertinent (et inutile) si on permet l'appel de
la tactique sur une terme donné directement (au lieu d'une constante comme
pour l'instant)).
\item [fonc] ([int*int]) : bornes des indices des variable correspondant aux
appels récursifs (plusieurs car fixp. mutuels), utile pour reconnaître les
appels récursifs (ATTENTION: initialement vide, reste vide tant qu'on n'est
pas dans un fix).
\end{itemize}
*)
type mimickinfo =
{
concl: constr;
absconcl: constr array;
mimick: constr;
env: env;
sigma: Evd.evar_map;
nmefonc: constr array;
fonc: int * int;
doeqs: bool; (* this reference is to toggle building of equalities during
the building of the principle (default is true) *)
fix: bool (* did I already went through a fix or case constr? lambdas
found before a case or a fix are treated as parameters of
the induction principle *)
}
(*
\begin{itemize}
\item [lst_vars] ([(constr*(name*constr)) list]): liste des variables
rencontrées jusqu'à maintenant.
\item [lst_eqs] ([constr list]): liste d'équations engendrées au cours du
parcours, cette liste grandit à chaque case, et il faut lifter le tout à
chaque binder.
\item [lst_recs] ([constr list]): listes des appels récursifs rencontrés
jusque là.
\end{itemize}
Cette fonction rends un nuplet de la forme:
[t,
[(ev1,tev1);(ev2,tev2)..],
[(i1,j1,k1);(i2,j2,k2)..],
[|c1;c2..|],
[|typ1;typ2..|],
[(param,tparam)..]]
*)
(* This could be the return type of [proofPrinc], but not yet *)
type funind =
{
princ:constr;
evarlist: (constr*Term.types) list;
hypnum: (int*int*int) list;
mutfixmetas: constr array ;
conclarray: types array;
params:(constr*name*constr) list
}
(*
où:
\begin{itemize}
\item[t] est le principe demandé, il contient des meta variables
représentant soit des trous à prouver plus tard, soit les conclusions à
compléter avant de rendre le terme (suivant qu'on utilise le principe pour
faire refine ou functional scheme). Il y plusieurs conclusions si plusieurs
fonction mutuellement récursives) voir la suite.
\item[[(ev1,tev1);(ev2,tev2)...]] est l'ensemble des méta variables
correspondant à des trous. [evi] est la meta variable, [tevi] est son type.
\item[(in,jn,kn)] sont les nombres respectivement de variables, d'équations,
et d'hypothèses de récurrence pour le but n. Permet de faire le bon nombre
d'intros et des rewrite au bons endroits dans la suite.
\item[[|c1;c2...|]] est un tableau de meta variables correspondant à chacun
des prédicats mutuellement récursifs construits.
\item[[|typ1;typ2...|]] est un tableau contenant les conclusions respectives
de chacun des prédicats mutuellement récursifs. Permet de finir la
construction du principe.
\item[[(param,tparam)..]] est la liste des paramètres (les lambda au-dessus
du fix) du fixpoint si fixpoint il y a.
\end{itemize}
*)
let heq_prefix = "H_eq_"
type kind_of_hyp = Var | Eq (*| Rec*)
let rec proofPrinc mi lst_vars lst_eqs lst_recs:
constr * (constr*Term.types) list * (int*int*int) list
* constr array * types array * (constr*name*constr) list =
match kind_of_term mi.mimick with
(* Fixpoint: we reproduce the Fix, fonc becomes (1,nbofmutf) to point on
the name of recursive calls *)
| Fix((iarr,i),(narr,tarr,carr)) ->
(* We construct the right predicates for each mutual fixpt *)
let rec build_pred n =
if n >= Array.length iarr then []
else
let ftyp = Array.get tarr n in
let gl = mknewmeta() in
let gl_app = applFull gl ftyp in
let pis = prod_change_concl ftyp gl_app in
let gl_abstr = lam_change_concl ftyp gl_app in
(gl,gl_abstr,pis):: build_pred (n+1) in
let evarl,predl,pisl = collect_pred (build_pred 0) in
let newabsconcl = Array.of_list predl in
let evararr = Array.of_list evarl in
let pisarr = Array.of_list pisl in
let newenv = push_rec_types (narr,tarr,carr) mi.env in
let rec collect_fix n =
if n >= Array.length iarr then [],[],[],[]
else
let nme = Array.get narr n in
let c = Array.get carr n in
(* rappelle sur le sous-terme, on ajoute un niveau de
profondeur (lift) parce que Fix est un binder. *)
let newmi = {mi with concl=(pisarr.(n)); absconcl=newabsconcl;
mimick=c; fonc=(1,((Array.length iarr)));env=newenv;fix=true} in
let appel_rec,levar,lposeq,_,evarrarr,parms =
proofPrinc newmi (lift1_lvars lst_vars)
(lift1_leqs lst_eqs) (lift1L lst_recs) in
let lnme,lappel_rec,llevar,llposeq = collect_fix (n+1) in
(nme::lnme),(appel_rec::lappel_rec),(levar@llevar), (lposeq@llposeq) in
let lnme,lappel_rec,llevar,llposeq =collect_fix 0 in
let lnme' = List.map (fun nme -> newname_append nme "_ind") lnme in
let anme = Array.of_list lnme' in
let aappel_rec = Array.of_list lappel_rec in
(* llevar are put outside the fix, so one level of rel must be removed *)
mkFix((iarr,i),(anme, pisarr,aappel_rec)),(pop1_levar llevar),llposeq,evararr,pisarr,[]
(* <pcase> Cases b of arrPt end.*)
| Case(cinfo, pcase, b, arrPt) ->
let prod_pcase,_ = decompose_lam pcase in
let nmeb,lastprod_pcase = List.hd prod_pcase in
let b'= apply_leqtrpl_t b lst_eqs in
let type_of_b = Typing.type_of mi.env mi.sigma b in
let new_lst_recs = lst_recs @ hdMatchSub_cpl b mi.fonc in
(* Replace the calls to the function (recursive calls) by calls to the
corresponding constant: *)
let d,f = mi.fonc in
let res = ref b' in
let _ = for i = d to f do
res := substitterm 0 (mkRel i) mi.nmefonc.(f-i) !res done in
let newb = !res in
(* [fold_proof t l n] rend le resultat de l'appel recursif sur les
elements de la liste l (correpsondant a arrPt), appele avec les bons
arguments: [concl] devient [(DUMMY1:t1;...;DUMMY:tn)concl'], ou [n]
est le nombre d'arguments du constructeur considéré (FIX: Hormis les
parametres!!), et [concl'] est concl ou l'on a réécrit [b] en ($c_n$
[rel1]...).*)
let rec fold_proof nth_construct eltPt' =
(* mise a jour de concl pour l'interieur du case, concl'= concl[b <- C x3
x2 x1... ], sans quoi les annotations ne sont plus coherentes *)
let cstr_appl,nargs = nth_dep_constructor type_of_b nth_construct in
let concl'' =
substitterm 0 (lift nargs b) cstr_appl (lift nargs mi.concl) in
let neweq = mkEq type_of_b newb (popn nargs cstr_appl) in
let concl_dummy = add_n_dummy_prod concl'' nargs in
let lsteqs_rew = apply_eq_leqtrpl lst_eqs neweq in
let new_lsteqs =
(mkRel (0-nargs),(type_of_b,newb, popn nargs cstr_appl))::lsteqs_rew in
let a',a'' = decompose_lam_n nargs eltPt' in
let newa'' =
if mi.doeqs
then mkLambda (name_of_string heq_prefix,lift nargs neweq,lift 1 a'')
else a'' in
let newmimick = lamn nargs a' newa'' in
let b',b'' = decompose_prod_n nargs concl_dummy in
let newb'' =
if mi.doeqs
then mkProd (name_of_string heq_prefix,lift nargs neweq,lift 1 b'')
else b'' in
let newconcl = prodn nargs b' newb'' in
let newmi = {mi with mimick=newmimick; concl=newconcl; fix=true} in
let a,b,c,d,e,p = proofPrinc newmi lst_vars new_lsteqs new_lst_recs in
a,b,c,d,e,p
in
let arrPt_proof,levar,lposeq,evararr,absc,_ =
collect_cases (Array.mapi fold_proof arrPt) in
let prod_pcase,concl_pcase = decompose_lam pcase in
let nme,typ = List.hd prod_pcase in
let suppllam_pcase = List.tl prod_pcase in
(* je remplace b par rel1 (apres avoir lifte un coup) dans la
future annotation du futur case: ensuite je mettrai un lambda devant *)
let typesofeqs' = eqs_of_beqs_named equality_hyp_string lst_eqs in
(* let typesofeqs = prod_it_lift typesofeqs' mi.concl in *)
let typesofeqs = mi.concl in
let typeof_case'' =
substitterm 0 (lift 1 b) (mkRel 1) (lift 1 typesofeqs) in
(* C'est un peu compliqué ici: en cas de type inductif vraiment dépendant
le piquant du case [pcase] contient des lambdas supplémentaires en tête
je les ai dans la variable [suppllam_pcase]. Le problème est que la
conclusion du piquant doit faire référence à ces variables plutôt qu'à
celle de l'exterieur. Ce qui suit permet de changer les reference de
newpacse' pour pointer vers les lambda du piquant. On procède comme
suit: on repère les rels qui pointent à l'interieur du piquant dans la
fonction imitée, pour ça on parcourt le dernier lambda du piquant (qui
contient le type de l'argument du case), et on remplace les rels
correspondant dans la preuve construite. *)
(* typ vient du piquant, type_of_b vient du typage de b.*)
let rel_smap =
if List.length suppllam_pcase=0 then Smap.empty else
build_rel_map (lift (List.length suppllam_pcase) type_of_b) typ in
let rel_map = smap_to_list rel_smap in
let rec substL l c =
match l with
[] -> c
| ((e,e') ::l') -> substL l' (substitterm 0 e (lift 1 e') c) in
let newpcase' = substL rel_map typeof_case'' in
let neweq = mkEq (lift (List.length suppllam_pcase + 1) type_of_b)
(lift (List.length suppllam_pcase + 1) newb) (mkRel 1) in
let newpcase =
if mi.doeqs then
mkProd (name_of_string "eg", neweq, lift 1 newpcase') else newpcase'
in
(* construction du dernier lambda du piquant. *)
let typeof_case' = mkLambda (newname_append nme "_ind" ,typ, newpcase) in
(* ajout des lambdas supplémentaires (type dépendant) du piquant. *)
let typeof_case =
lamn (List.length suppllam_pcase) suppllam_pcase typeof_case' in
let trm' = mkCase (cinfo,typeof_case,newb, arrPt_proof) in
let trm =
if mi.doeqs then mkApp (trm',[|(mkRefl type_of_b newb)|])
else trm' in
trm,levar,lposeq,evararr,absc,[] (* fix parms here (fix inside case)*)
| Lambda(nme, typ, cstr) ->
let _, _, cconcl = destProd mi.concl in
let d,f=mi.fonc in
let newenv = push_rel (nme,None,typ) mi.env in
let newmi = {mi with concl=cconcl; mimick=cstr; env=newenv;
fonc=((if d > 0 then d+1 else 0),(if f > 0 then f+1 else 0))} in
let newlst_var = (* if this lambda is a param, then don't add it here *)
if mi.fix then (mkRel 1,(nme,typ)) :: lift1_lvars lst_vars
else (*(mkRel 1,(nme,typ)) :: *) lift1_lvars lst_vars in
let rec_call,levar,lposeq,evararr,absc,parms =
proofPrinc newmi newlst_var (lift1_leqs lst_eqs) (lift1L lst_recs) in
(* are we inside a fixpoint or a case? then this is a normal lambda *)
if mi.fix then mkLambda (nme,typ,rec_call) , levar, lposeq,evararr,absc,[]
else (* otherwise this is a parameter *)
let metav = mknewmeta() in
let substmeta t = popn 1 (substitterm 0 (mkRel 1) metav t) in
let newrec_call = substmeta rec_call in
let newlevar = List.map (fun ev,tev -> ev, substmeta tev) levar in
let newabsc = Array.map substmeta absc in
newrec_call,newlevar,lposeq,evararr,newabsc,((metav,nme, typ)::parms)
| LetIn(nme,cstr1, typ, cstr) ->
failwith ("I don't deal with let ins yet. "^
"Please expand them before applying this function.")
| u ->
let varrels = List.rev (List.map fst lst_vars) in
let varnames = List.map snd lst_vars in
let nb_vars = (List.length varnames) in
let nb_eqs = (List.length lst_eqs) in
let eqrels = List.map fst lst_eqs in
(* [terms_recs]: appel rec du fixpoint, On concatène les appels recs
trouvés dans les let in et les Cases. *)
(* TODO: il faudra gérer plusieurs pt fixes imbriqués ? *)
let terms_recs = lst_recs @ (hdMatchSub_cpl mi.mimick mi.fonc) in
(*c construction du terme: application successive des variables, des
egalites et des appels rec, a la variable existentielle correspondant a
l'hypothese de recurrence en cours. *)
(* d'abord, on fabrique les types des appels recursifs en replacant le nom
de des fonctions par les predicats dans [terms_recs]: [(f_i t u v)]
devient [(P_i t u v)] *)
(* TODO optimiser ici: *)
let appsrecpred = exchange_reli_arrayi_L mi.absconcl mi.fonc terms_recs in
let typeofhole'' = prod_it_anonym_lift mi.concl appsrecpred in
let typeofhole = prodn nb_vars varnames typeofhole'' in
(* Un bug de refine m'oblige à mettre ici un H (meta variable à ce point,
mais remplacé par H avant le refine) au lieu d'un '?', je mettrai les
'?' à la fin comme ça [(([H1,H2,H3...] ...) ? ? ?)] *)
let newmeta = mknewmeta() in
let concl_with_var = applistc newmeta varrels in
let conclrecs = applistc concl_with_var terms_recs in
conclrecs,[newmeta,typeofhole], [nb_vars,(List.length terms_recs)
,nb_eqs],[||],mi.absconcl,[]
let mkevarmap_aux ex = let x,y = ex in (mkevarmap_from_listex x),y
(* Interpretation of constr's *)
let constr_of_Constr c = Constrintern.interp_constr Evd.empty (Global.env()) c
(* TODO: deal with any term, not only a constant. *)
let interp_fonc_tacarg fonctac gl =
(* [fonc] is the constr corresponding to fontact not unfolded,
if [fonctac] is a (qualified) name then this is a [const] ?. *)
(* let fonc = constr_of_Constr fonctac in *)
(* TODO: replace the [with _ -> ] by something more precise in
the following. *)
(* [def_fonc] is the definition of fonc. TODO: We should do this only
if [fonc] is a const, and take [fonc] otherwise.*)
try fonctac, pf_const_value gl (destConst fonctac)
with _ -> failwith ("don't know how to deal with this function "
^"(DEBUG:is it a constante?)")
(* [invfun_proof fonc def_fonc gl_abstr pis] builds the principle,
following the shape of [def_fonc], [fonc] is the constant
corresponding to [def_func] (or a reduced form of it ?), gl_abstr and
pis are the goal to be proved, of the form [x,y...]g and (x.y...)g.
This function calls the big function proofPrinc. *)
let invfun_proof fonc def_fonc gl_abstr pis env sigma =
let mi = {concl=pis; absconcl=gl_abstr; mimick=def_fonc; env=env;
sigma=sigma; nmefonc=fonc; fonc=(0,0); doeqs=true; fix=false} in
let princ_proof,levar,lposeq,evararr,absc,parms = proofPrinc mi [] [] [] in
princ_proof,levar,lposeq,evararr,absc,parms
(* Do intros [i] times, then do rewrite on all introduced hyps which are called
like [heq_prefix], FIX: have another filter than the name. *)
let rec iterintro i =
if i<=0 then tclIDTAC else
tclTHEN
(tclTHEN
intro
(iterintro (i-1)))
(fun gl ->
(tclREPEAT
(tclNTH_HYP i
(fun hyp ->
let hypname = (string_of_id (destVar hyp)) in
let sub =
try String.sub hypname 0 (String.length heq_prefix)
with _ -> "" (* different than [heq_prefix] *) in
if sub=heq_prefix then rewriteLR hyp else tclFAIL 0 "Cannot rewrite")
)) gl)
(*
(fun hyp gl ->
let _ = print_string ("nthhyp= "^ string_of_int i) in
if isConst hyp && ((name_of_const hyp)==heq_prefix) then
let _ = print_string "YES\n" in
rewriteLR hyp gl
else
let _ = print_string "NO\n" in
tclIDTAC gl)
*)
(* [invfun_basic C listargs_ids gl dorew lposeq] builds the tactic
which:
\begin{itemize}
\item Do refine on C (the induction principle),
\item try to Clear listargs_ids
\item if boolean dorew is true, then intro all new hypothesis, and
try rewrite on those hypothesis that are equalities.
\end{itemize}
*)
let invfun_basic open_princ_proof_applied listargs_ids gl dorew lposeq =
(tclTHEN_i
(tclTHEN
(tclTHEN
(* Refine on the right term (following the sheme of the
given function) *)
(fun gl -> refine open_princ_proof_applied gl)
(* Clear the hypothesis given as arguments of the tactic
(because they are generalized) *)
(tclTHEN simpl_in_concl (tclTRY (clear listargs_ids))))
(* Now we introduce the created hypothesis, and try rewrite on
equalities due to case analysis *)
(fun gl -> (tclIDTAC gl)))
(fun i gl ->
if not dorew then tclIDTAC gl
else
(* d,m,f correspond respectively to vars, induction hyps and
equalities*)
let d,m,f = List.nth lposeq (i-1) in
tclTHEN (iterintro (d)) (tclDO m (tclTRY intro)) gl)
)
gl
(* This function trys to reduce instanciated arguments, provided they
are of the form [(C t u v...)] where [C] is a constructor, and
provided that the argument is not the argument of a fixpoint (i.e. the
argument corresponds to a simple lambda) . *)
let rec applistc_iota cstr lcstr env sigma =
match lcstr with
| [] -> cstr,[]
| arg::lcstr' ->
let arghd =
if isApp arg then let x,_ = destApplication arg in x else arg in
if isConstruct arghd (* of the form [(C ...)]*)
then
applistc_iota (Tacred.nf env sigma (nf_beta (applistc cstr [arg])))
lcstr' env sigma
else
try
let nme,typ,suite = destLambda cstr in
let c, l = applistc_iota suite lcstr' env sigma in
mkLambda (nme,typ,c), arg::l
with _ -> cstr,arg::lcstr' (* the arg does not correspond to a lambda*)
(* TODO: ne plus mettre les sous-but à l'exterieur, mais à l'intérieur (le bug
de refine est normalement resolu). Ca permettra 2 choses: d'une part que
les preuves soient plus simple, et d'autre part de fabriquer un terme de
refine qui pourra s'aapliquer SANS FAIRE LES INTROS AVANT, ce qui est bcp
mieux car fonctionne comme induction et plus comme inversion (pas de perte
de connexion entre les hypothèse et les variables). *)
(*s Tactic that makes induction and case analysis following the shape
of a function (idf) given with arguments (listargs) *)
let invfun c l dorew gl =
(* \begin{itemize}
\item [fonc] = the constant corresponding to the function
(necessary for equalities of the form [(f x1 x2 ...)=...] where
[f] is the recursive function).
\item [def_fonc] = body of the function, where let ins have
been expanded. *)
let fonc, def_fonc' = interp_fonc_tacarg c gl in
let def_fonc'',listargs' =
applistc_iota def_fonc' l (pf_env gl) (project gl) in
let def_fonc = expand_letins def_fonc'' in
(* quantifies on previously generalized arguments.
[(x1:T1)...g[arg1 <- x1 ...]] *)
let pis = add_pis (pf_concl gl) gl listargs' in
(* princ_proof builds the principle *)
let _ = resetmeta() in
let princ_proof,levar, lposeq,evararr,_,parms =
invfun_proof [|fonc|] def_fonc [||] pis (pf_env gl) (project gl) in
(* Generalize the goal. [[x1:T1][x2:T2]... g[arg1 <- x1 ...]]. *)
let gl_abstr' = add_lambdas (pf_concl gl) gl listargs' in
(* apply parameters immediately *)
let gl_abstr = applistc gl_abstr' (List.map (fun x,y,z -> x) (List.rev parms)) in
(* we apply args of the fix now, the parameters will be applied later *)
let princ_proof_applied_args =
applistc princ_proof (listsuf (List.length parms) listargs') in
(* parameters are still there so patternify must not take them -> lift *)
let princ_proof_applied_lift =
lift (List.length levar) princ_proof_applied_args in
let princ_applied_hyps'' = patternify (List.rev levar)
princ_proof_applied_lift (Name (id_of_string "Hyp")) in
(* if there was a fix, we will not add "Q" as in funscheme, so we make a pop,
TODO: find were we made the lift in proofPrinc instead and supress it here,
and add lift in funscheme. *)
let princ_applied_hyps' =
if Array.length evararr > 0 then popn 1 princ_applied_hyps''
else princ_applied_hyps'' in
let princ_applied_hyps =
if Array.length evararr > 0 then (* mutual Fixpoint not treated in the tactic *)
(substit_red 0 (evararr.(0)) gl_abstr princ_applied_hyps')
else princ_applied_hyps' (* No Fixpoint *) in
let _ = prNamedConstr "princ_applied_hyps" princ_applied_hyps in
(* replace params metavar by real args *)
let rec replace_parms lparms largs t =
match lparms, largs with
[], _ -> t
| ((p,_,_)::lp), (a::la) -> let t'= substitterm 0 p a t in replace_parms lp la t'
| _, _ -> error "problem with number of args." in
let princ_proof_applied = replace_parms parms listargs' princ_applied_hyps in
(*
(* replace params metavar by abstracted variables *)
let princ_proof_params = npatternify (List.rev parms) princ_applied_hyps in
(* we apply now the real parameters *)
let princ_proof_applied =
applistc princ_proof_params (listpref (List.length parms) listargs') in
*)
let princ_applied_evars = apply_levars princ_proof_applied levar in
let open_princ_proof_applied = princ_applied_evars in
let listargs_ids = List.map destVar (List.filter isVar listargs') in
invfun_basic (mkevarmap_aux open_princ_proof_applied) listargs_ids
gl dorew lposeq
(* function must be a constant, all arguments must be given. *)
let invfun_verif c l dorew gl =
if not (isConst c) then error "given function is not a constant"
else
let x,_ = decompose_prod (pf_type_of gl c) in
if List.length x = List.length l then
try invfun c l dorew gl
with
UserError (x,y) -> raise (UserError (x,y))
else error "wrong number of arguments for the function"
TACTIC EXTEND FunctionalInduction
[ "Functional" "Induction" constr(c) ne_constr_list(l) ]
-> [ invfun_verif c l true ]
END
(* Construction of the functional scheme. *)
let buildFunscheme fonc mutflist =
let def_fonc = expand_letins (def_of_const fonc) in
let ftyp = type_of (Global.env ()) Evd.empty fonc in
let _ = resetmeta() in
let gl = mknewmeta() in
let gl_app = applFull gl ftyp in
let pis = prod_change_concl ftyp gl_app in
(* Here we call the function invfun_proof, that effectively
builds the scheme *)
let princ_proof,levar,_,evararr,absc,parms =
invfun_proof mutflist def_fonc [||] pis (Global.env()) Evd.empty in
(* parameters are still there (unboud rel), and patternify must not take them
-> lift*)
let princ_proof_lift = lift (List.length levar) princ_proof in
let princ_proof_hyps =
patternify (List.rev levar) princ_proof_lift (Name (id_of_string "Hyp")) in
let rec princ_replace_metas ev abs i t =
if i>= Array.length ev then t
else (* fix? *)
princ_replace_metas ev abs (i+1)
(mkLambda (
(Name (id_of_string ("Q"^(string_of_int i)))),
prod_change_concl (lift 0 abs.(i)) mkthesort,
(substitterm 0 ev.(i) (mkRel 1) (lift 0 t))))
in
let rec princ_replace_params params t =
List.fold_left (
fun acc ev,nam,typ ->
mkLambda (Name (id_of_name nam) , typ,
substitterm 0 ev (mkRel 1) (lift 0 acc)))
t (List.rev params) in
if Array.length evararr = 0 (* Is there a Fixpoint? *)
then (* No Fixpoint *)
princ_replace_params parms (mkLambda ((Name (id_of_string "Q")),
prod_change_concl ftyp mkthesort,
(substitterm 0 gl (mkRel 1) princ_proof_hyps)))
else (* there is a fix -> add parameters + replace metas *)
let princ_rpl = princ_replace_metas evararr absc 0 princ_proof_hyps in
princ_replace_params parms princ_rpl
(* Declaration of the functional scheme. *)
let declareFunScheme f fname mutflist =
let scheme =
buildFunscheme (constr_of f)
(Array.of_list (List.map constr_of (f::mutflist))) in
let _ = prstr "Principe:" in
let _ = prconstr scheme in
let ce = {
const_entry_body = scheme;
const_entry_type = None;
const_entry_opaque = false } in
let _= ignore (declare_constant fname (DefinitionEntry ce,IsDefinition)) in
()
VERNAC COMMAND EXTEND FunctionalScheme
[ "Functional" "Scheme" ident(na) ":=" "Induction" "for"
constr(c) "with" ne_constr_list(l) ]
-> [ declareFunScheme c na l ]
| [ "Functional" "Scheme" ident(na) ":=" "Induction" "for" constr(c) ]
-> [ declareFunScheme c na [] ]
END
(*
*** Local Variables: ***
*** compile-command: "make -C ../.. contrib/funind/tacinv.cmo" ***
*** tab-width: 1 ***
*** tuareg-default-indent:1 ***
*** tuareg-begin-indent:1 ***
*** tuareg-let-indent:1 ***
*** tuareg-match-indent:-1 ***
*** tuareg-try-indent:1 ***
*** tuareg-with-indent:1 ***
*** tuareg-if-then-else-inden:1 ***
*** fill-column: 78 ***
*** indent-tabs-mode: nil ***
*** test-tactic: "../../bin/coqtop -translate -q -batch -load-vernac-source ../../test-suite/success/Funind.v" ***
*** End: ***
*)
|