1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Merging of induction principles. *)
(*i $Id: i*)
open Util
open Topconstr
open Vernacexpr
open Pp
open Names
open Term
open Declarations
open Environ
open Rawterm
open Rawtermops
(** {1 Utilities} *)
(** {2 Useful operations on constr and rawconstr} *)
(** Substitutions in constr *)
let compare_constr_nosub t1 t2 =
if compare_constr (fun _ _ -> false) t1 t2
then true
else false
let rec compare_constr' t1 t2 =
if compare_constr_nosub t1 t2
then true
else (compare_constr (compare_constr') t1 t2)
let rec substitterm prof t by_t in_u =
if (compare_constr' (lift prof t) in_u)
then (lift prof by_t)
else map_constr_with_binders succ
(fun i -> substitterm i t by_t) prof in_u
let lift_ldecl n ldecl = List.map (fun (x,y) -> x,lift n y) ldecl
let understand = Pretyping.Default.understand Evd.empty (Global.env())
(** Operations on names and identifiers *)
let id_of_name = function
Anonymous -> id_of_string "H"
| Name id -> id;;
let name_of_string str = Name (id_of_string str)
let string_of_name nme = string_of_id (id_of_name nme)
(** [isVarf f x] returns [true] if term [x] is of the form [(Var f)]. *)
let isVarf f x =
match x with
| RVar (_,x) -> Pervasives.compare x f = 0
| _ -> false
(** [ident_global_exist id] returns true if identifier [id] is linked
in global environment. *)
let ident_global_exist id =
try
let ans = CRef (Libnames.Ident (dummy_loc,id)) in
let _ = ignore (Constrintern.intern_constr Evd.empty (Global.env()) ans) in
true
with _ -> false
(** [next_ident_fresh id] returns a fresh identifier (ie not linked in
global env) with base [id]. *)
let next_ident_fresh (id:identifier) =
let res = ref id in
while ident_global_exist !res do res := Nameops.lift_ident !res done;
!res
(** {2 Debugging} *)
(* comment this line to see debug msgs *)
let msg x = () ;; let pr_lconstr c = str ""
(* uncomment this to see debugging *)
let prconstr c = msg (str" " ++ Printer.pr_lconstr c)
let prconstrnl c = msg (str" " ++ Printer.pr_lconstr c ++ str"\n")
let prlistconstr lc = List.iter prconstr lc
let prstr s = msg(str s)
let prNamedConstr s c =
begin
msg(str "");
msg(str(s^" {§ ") ++ Printer.pr_lconstr c ++ str " §} ");
msg(str "");
end
let prNamedRConstr s c =
begin
msg(str "");
msg(str(s^" {§ ") ++ Printer.pr_rawconstr c ++ str " §} ");
msg(str "");
end
let prNamedLConstr_aux lc = List.iter (prNamedConstr "\n") lc
let prNamedLConstr s lc =
begin
prstr "[§§§ ";
prstr s;
prNamedLConstr_aux lc;
prstr " §§§]\n";
end
let prNamedLDecl s lc =
begin
prstr s; prstr "\n";
List.iter (fun (nm,_,tp) -> prNamedConstr (string_of_name nm) tp) lc;
prstr "\n";
end
let showind (id:identifier) =
let cstrid = Tacinterp.constr_of_id (Global.env()) id in
let ind1,cstrlist = Inductiveops.find_inductive (Global.env()) Evd.empty cstrid in
let mib1,ib1 = Inductive.lookup_mind_specif (Global.env()) ind1 in
List.iter (fun (nm, optcstr, tp) ->
print_string (string_of_name nm^":");
prconstr tp; print_string "\n")
ib1.mind_arity_ctxt;
(match ib1.mind_arity with
| Monomorphic x ->
Printf.printf "arity :"; prconstr x.mind_user_arity
| Polymorphic x ->
Printf.printf "arity : universe?");
Array.iteri
(fun i x -> Printf.printf"type constr %d :" i ; prconstr x)
ib1.mind_user_lc
(** {2 Misc} *)
exception Found of int
(* Array scanning *)
let array_find (arr: 'a array) (pred: int -> 'a -> bool): int option =
try
for i=0 to Array.length arr - 1 do if pred i (arr.(i)) then raise (Found i) done;
None
with Found i -> Some i
let array_prfx (arr: 'a array) (pred: int -> 'a -> bool): int =
try
for i=0 to Array.length arr - 1 do if pred i (arr.(i)) then raise (Found i) done;
Array.length arr (* all elt are positive *)
with Found i -> i
let array_fold_lefti (f: int -> 'a -> 'b -> 'a) (acc:'a) (arr:'b array): 'a =
let i = ref 0 in
Array.fold_left
(fun acc x ->
let res = f !i acc x in i := !i + 1; res)
acc arr
(* Like list_chop but except that [i] is the size of the suffix of [l]. *)
let list_chop_end i l =
let size_prefix = List.length l -i in
if size_prefix < 0 then failwith "list_chop_end"
else list_chop size_prefix l
let list_fold_lefti (f: int -> 'a -> 'b -> 'a) (acc:'a) (arr:'b list): 'a =
let i = ref 0 in
List.fold_left
(fun acc x ->
let res = f !i acc x in i := !i + 1; res)
acc arr
let list_filteri (f: int -> 'a -> bool) (l:'a list):'a list =
let i = ref 0 in
List.filter (fun x -> let res = f !i x in i := !i + 1; res) l
(** Iteration module *)
module For =
struct
let rec map i j (f: int -> 'a) = if i>j then [] else f i :: (map (i+1) j f)
let rec foldup i j (f: 'a -> int -> 'a) acc =
if i>j then acc else let newacc = f acc i in foldup (i+1) j f newacc
let rec folddown i j (f: 'a -> int -> 'a) acc =
if i>j then acc else let newacc = f acc j in folddown i (j-1) f newacc
let fold i j = if i<j then foldup i j else folddown i j
end
(** {1 Parameters shifting and linking information} *)
(** This type is used to deal with debruijn linked indices. When a
variable is linked to a previous one, we will ignore it and refer
to previous one. *)
type linked_var =
| Linked of int
| Unlinked
| Funres
(** When merging two graphs, parameters may become regular arguments,
and thus be shifted. This type describe the result of computing
the changes. *)
type 'a shifted_params =
{
nprm1:'a;
nprm2:'a;
prm2_unlinked:'a list; (* ranks of unlinked params in nprms2 *)
nuprm1:'a;
nuprm2:'a;
nargs1:'a;
nargs2:'a;
}
let prlinked x =
match x with
| Linked i -> Printf.sprintf "Linked %d" i
| Unlinked -> Printf.sprintf "Unlinked"
| Funres -> Printf.sprintf "Funres"
let linkmonad f lnkvar =
match lnkvar with
| Linked i -> Linked (f i)
| Unlinked -> Unlinked
| Funres -> Funres
let linklift lnkvar i = linkmonad (fun x -> x+i) lnkvar
(* This map is used to deal with debruijn linked indices. *)
module Link = Map.Make (struct type t = int let compare = Pervasives.compare end)
let pr_links l =
Printf.printf "links:\n";
Link.iter (fun k e -> Printf.printf "%d : %s\n" k (prlinked e)) l;
Printf.printf "_____________\n"
type 'a merged_arg =
| Prm_stable of 'a
| Prm_linked of 'a
| Prm_arg of 'a
| Arg_stable of 'a
| Arg_linked of 'a
| Arg_funres
type merge_infos =
{
ident:identifier; (* new inductive name *)
mib1: mutual_inductive_body;
oib1: one_inductive_body;
mib2: mutual_inductive_body;
oib2: one_inductive_body;
(* Array of links of the first inductive (should be all stable) *)
lnk1: int merged_arg array;
(* Array of links of the second inductive (point to the first ind param/args) *)
lnk2: int merged_arg array;
(* number of rec params of ind1 which remai rec param in merge *)
nrecprms1: int;
(* number of other rec params of ind1 (which become non parm) *)
notherprms1:int;
(* number of functional result params of ind2 (which become non parm) *)
nfunresprms1:int;
(* list of decl of rec parms from ind1 which remain parms *)
recprms1: rel_declaration list;
(* List of other rec parms from ind1 *)
otherprms1: rel_declaration list; (* parms that became args *)
funresprms1: rel_declaration list; (* parms that are functional result args *)
(* number of rec params of ind2 which remain rec param in merge (and not linked) *)
nrecprms2: int;
(* number of other params of ind2 (which become non rec parm) *)
notherprms2:int;
(* number of functional result params of ind2 (which become non parm) *)
nfunresprms2:int;
(* list of decl of rec parms from ind2 which remain parms (and not linked) *)
recprms2: rel_declaration list;
(* List of other rec parms from ind2 (which are linked or become non parm) *)
otherprms2: rel_declaration list;
funresprms2: rel_declaration list; (* parms that are functional result args *)
}
let pr_merginfo x =
let i,s=
match x with
| Prm_linked i -> Some i,"Prm_linked"
| Arg_linked i -> Some i,"Arg_linked"
| Prm_stable i -> Some i,"Prm_stable"
| Prm_arg i -> Some i,"Prm_arg"
| Arg_stable i -> Some i,"Arg_stable"
| Arg_funres -> None , "Arg_funres" in
match i with
| Some i -> Printf.sprintf "%s(%d)" s i
| None -> Printf.sprintf "%s" s
let isPrm_stable x = match x with Prm_stable _ -> true | _ -> false
let isArg_stable x = match x with Arg_stable _ -> true | _ -> false
let isArg_funres x = match x with Arg_funres -> true | _ -> false
let filter_shift_stable (lnk:int merged_arg array) (l:'a list): 'a list =
let prms = list_filteri (fun i _ -> isPrm_stable lnk.(i)) l in
let args = list_filteri (fun i _ -> isArg_stable lnk.(i)) l in
let fres = list_filteri (fun i _ -> isArg_funres lnk.(i)) l in
prms@args@fres
(** Reverse the link map, keeping only linked vars, elements are list
of int as several vars may be linked to the same var. *)
let revlinked lnk =
For.fold 0 (Array.length lnk - 1)
(fun acc k ->
match lnk.(k) with
| Unlinked | Funres -> acc
| Linked i ->
let old = try Link.find i acc with Not_found -> [] in
Link.add i (k::old) acc)
Link.empty
let array_switch arr i j =
let aux = arr.(j) in arr.(j) <- arr.(i); arr.(i) <- aux
let filter_shift_stable_right (lnk:int merged_arg array) (l:'a list): 'a list =
let larr = Array.of_list l in
let _ =
Array.iteri
(fun j x ->
match x with
| Prm_linked i -> array_switch larr i j
| Arg_linked i -> array_switch larr i j
| Prm_stable i -> ()
| Prm_arg i -> ()
| Arg_stable i -> ()
| Arg_funres -> ()
) lnk in
filter_shift_stable lnk (Array.to_list larr)
(** {1 Utilities for merging} *)
let ind1name = id_of_string "__ind1"
let ind2name = id_of_string "__ind2"
(** Performs verifications on two graphs before merging: they must not
be co-inductive, and for the moment they must not be mutual
either. *)
let verify_inds mib1 mib2 =
if not mib1.mind_finite then error "First argument is coinductive";
if not mib2.mind_finite then error "Second argument is coinductive";
if mib1.mind_ntypes <> 1 then error "First argument is mutual";
if mib2.mind_ntypes <> 1 then error "Second argument is mutual";
()
(** {1 Merging function graphs} *)
(** [shift_linked_params mib1 mib2 lnk] Computes which parameters (rec
uniform and ordinary ones) of mutual inductives [mib1] and [mib2]
remain uniform when linked by [lnk]. All parameters are
considered, ie we take parameters of the first inductive body of
[mib1] and [mib2].
Explanation: The two inductives have parameters, some of the first
are recursively uniform, some of the last are functional result of
the functional graph.
(I x1 x2 ... xk ... xk' ... xn)
(J y1 y2 ... xl ... yl' ... ym)
Problem is, if some rec unif params are linked to non rec unif
ones, they become non rec (and the following too). And functinal
argument have to be shifted at the end *)
let shift_linked_params mib1 mib2 (lnk1:linked_var array) (lnk2:linked_var array) id =
let linked_targets = revlinked lnk2 in
let is_param_of_mib1 x = x < mib1.mind_nparams_rec in
let is_param_of_mib2 x = x < mib2.mind_nparams_rec in
let is_targetted_by_non_recparam_lnk1 i =
try
let targets = Link.find i linked_targets in
List.exists (fun x -> not (is_param_of_mib2 x)) targets
with Not_found -> false in
let mlnk1 =
Array.mapi
(fun i lkv ->
let isprm = is_param_of_mib1 i in
let prmlost = is_targetted_by_non_recparam_lnk1 i in
match isprm , prmlost, lnk1.(i) with
| true , true , _ -> Prm_arg i (* recparam becoming ordinary *)
| true , false , _-> Prm_stable i (* recparam remains recparam*)
| false , false , Funres -> Arg_funres
| _ , _ , Funres -> assert false (* fun res cannot be a rec param or lost *)
| false , _ , _ -> Arg_stable i) (* Args of lnk1 are not linked *)
lnk1 in
let mlnk2 =
Array.mapi
(fun i lkv ->
(* Is this correct if some param of ind2 is lost? *)
let isprm = is_param_of_mib2 i in
match isprm , lnk2.(i) with
| true , Linked j when not (is_param_of_mib1 j) ->
Prm_arg j (* recparam becoming ordinary *)
| true , Linked j -> Prm_linked j (*recparam linked to recparam*)
| true , Unlinked -> Prm_stable i (* recparam remains recparam*)
| false , Linked j -> Arg_linked j (* Args of lnk2 lost *)
| false , Unlinked -> Arg_stable i (* Args of lnk2 remains *)
| false , Funres -> Arg_funres
| true , Funres -> assert false (* fun res cannot be a rec param *)
)
lnk2 in
let oib1 = mib1.mind_packets.(0) in
let oib2 = mib2.mind_packets.(0) in
(* count params remaining params *)
let n_params1 = array_prfx mlnk1 (fun i x -> not (isPrm_stable x)) in
let n_params2 = array_prfx mlnk2 (fun i x -> not (isPrm_stable x)) in
let bldprms arity_ctxt mlnk =
list_fold_lefti
(fun i (acc1,acc2,acc3) x ->
match mlnk.(i) with
| Prm_stable _ -> x::acc1 , acc2 , acc3
| Prm_arg _ | Arg_stable _ -> acc1 , x::acc2 , acc3
| Arg_funres -> acc1 , acc2 , x::acc3
| _ -> acc1 , acc2 , acc3) (* Prm_linked and Arg_xxx = forget it *)
([],[],[]) arity_ctxt in
let recprms1,otherprms1,funresprms1 = bldprms (List.rev oib1.mind_arity_ctxt) mlnk1 in
let recprms2,otherprms2,funresprms2 = bldprms (List.rev oib2.mind_arity_ctxt) mlnk2 in
{
ident=id;
mib1=mib1;
oib1 = oib1;
mib2=mib2;
oib2 = oib2;
lnk1 = mlnk1;
lnk2 = mlnk2;
nrecprms1 = n_params1;
recprms1 = recprms1;
otherprms1 = otherprms1;
funresprms1 = funresprms1;
notherprms1 = Array.length mlnk1 - n_params1;
nfunresprms1 = List.length funresprms1;
nrecprms2 = n_params2;
recprms2 = recprms2;
otherprms2 = otherprms2;
funresprms2 = funresprms2;
notherprms2 = Array.length mlnk2 - n_params2;
nfunresprms2 = List.length funresprms2;
}
(** {1 Merging functions} *)
exception NoMerge
(* lnk is an link array of *all* args (from 1 and 2) *)
let merge_app c1 c2 id1 id2 shift filter_shift_stable =
let lnk = Array.append shift.lnk1 shift.lnk2 in
match c1 , c2 with
| RApp(_,f1, arr1), RApp(_,f2,arr2) when isVarf id1 f1 && isVarf id2 f2 ->
let args = filter_shift_stable lnk (arr1 @ arr2) in
RApp (dummy_loc,RVar (dummy_loc,shift.ident) , args)
| RApp(_,f1, arr1), RApp(_,f2,arr2) -> raise NoMerge
| _ -> raise NoMerge
let merge_app_unsafe c1 c2 shift filter_shift_stable =
let lnk = Array.append shift.lnk1 shift.lnk2 in
match c1 , c2 with
| RApp(_,f1, arr1), RApp(_,f2,arr2) ->
let args = filter_shift_stable lnk (arr1 @ arr2) in
RApp (dummy_loc,RVar(dummy_loc,shift.ident) , args)
| _ -> raise NoMerge
(* Heuristic when merging two lists of hypothesis: merge every rec
calls of nrach 1 with all rec calls of branch 2. *)
(* TODO: reecrire cette heuristique (jusqu'a merge_types) *)
let onefoud = ref false (* Ugly *)
let rec merge_rec_hyps shift accrec (ltyp:(Names.name * Rawterm.rawconstr) list)
filter_shift_stable =
match ltyp with
| [] -> []
| (nme,(RApp(_,f, largs) as t)) :: lt when isVarf ind2name f ->
let _ = onefoud := true in
let rechyps =
List.map
(fun (nme,ind) ->
match ind with
| RApp(_,i,args) ->
nme, merge_app_unsafe ind t shift filter_shift_stable
| _ -> assert false)
accrec in
rechyps @ merge_rec_hyps shift accrec lt filter_shift_stable
| e::lt -> e :: merge_rec_hyps shift accrec lt filter_shift_stable
let rec build_suppl_reccall (accrec:(name * rawconstr) list) concl2 shift =
List.map (fun (nm,tp) -> (nm,merge_app_unsafe tp concl2 shift)) accrec
let find_app (nme:identifier) (ltyp: (name * rawconstr) list) =
try
ignore
(List.map
(fun x ->
match x with
| _,(RApp(_,f,_)) when isVarf nme f -> raise (Found 0)
| _ -> ())
ltyp);
false
with Found _ -> true
let rec merge_types shift accrec1 (ltyp1:(name * rawconstr) list)
concl1 (ltyp2:(name * rawconstr) list) concl2
: (name * rawconstr) list * rawconstr =
let _ = prstr "MERGE_TYPES\n" in
let _ = prstr "ltyp 1 : " in
let _ = List.iter (fun (nm,tp) -> prNamedRConstr (string_of_name nm) tp) ltyp1 in
let _ = prstr "\nltyp 2 : " in
let _ = List.iter (fun (nm,tp) -> prNamedRConstr (string_of_name nm) tp) ltyp2 in
let _ = prstr "\n" in
let res =
match ltyp1 with
| [] ->
let isrec1 = (accrec1<>[]) in
let isrec2 = find_app ind2name ltyp2 in
let _ = if isrec2 then prstr " ISREC2 TRUE" else prstr " ISREC2 FALSE" in
let _ = if isrec1 then prstr " ISREC1 TRUE\n" else prstr " ISREC1 FALSE\n" in
let rechyps =
if isrec1 && isrec2
then merge_rec_hyps shift accrec1 ltyp2 filter_shift_stable
else if isrec1
(* if rec calls in accrec1 and not in ltyp2, add one to ltyp2 *)
then merge_rec_hyps shift accrec1 (ltyp2@[name_of_string "concl2",concl2])
filter_shift_stable
else if isrec2
then merge_rec_hyps shift [name_of_string "concl1",concl1] ltyp2
filter_shift_stable_right
else [] in
let _ = prstr"\nrechyps : " in
let _ = List.iter
(fun (nm,tp) -> prNamedRConstr (string_of_name nm) tp) rechyps in
let _ = prstr "MERGE CONCL : " in
let _ = prNamedRConstr "concl1" concl1 in
let _ = prstr " with " in
let _ = prNamedRConstr "concl2" concl2 in
let _ = prstr "\n" in
let concl =
merge_app concl1 concl2 ind1name ind2name shift filter_shift_stable in
let _ = prstr "FIN " in
let _ = prNamedRConstr "concl" concl in
let _ = prstr "\n" in
rechyps , concl
| (nme,t1)as e ::lt1 ->
match t1 with
| RApp(_,f,carr) when isVarf ind1name f ->
merge_types shift (e::accrec1) lt1 concl1 ltyp2 concl2
| _ ->
let recres, recconcl2 =
merge_types shift accrec1 lt1 concl1 ltyp2 concl2 in
((nme,t1) :: recres) , recconcl2
in
res
(** [build_link_map_aux allargs1 allargs2 shift] returns the mapping of
linked args [allargs2] to target args of [allargs1] as specified
in [shift]. [allargs1] and [allargs2] are in reverse order. Also
returns the list of unlinked vars of [allargs2]. *)
let build_link_map_aux (allargs1:identifier array) (allargs2:identifier array)
(lnk:int merged_arg array) =
array_fold_lefti
(fun i acc e ->
if i = Array.length lnk - 1 then acc (* functional arg, not in allargs *)
else
match e with
| Prm_linked j | Arg_linked j -> Idmap.add allargs2.(i) allargs1.(j) acc
| _ -> acc)
Idmap.empty lnk
let build_link_map allargs1 allargs2 lnk =
let allargs1 =
Array.of_list (List.rev (List.map (fun (x,y) -> id_of_name x) allargs1)) in
let allargs2 =
Array.of_list (List.rev (List.map (fun (x,y) -> id_of_name x) allargs2)) in
build_link_map_aux allargs1 allargs2 lnk
(** [merge_one_constructor lnk shift typcstr1 typcstr2] merges the two
constructor rawtypes [typcstr1] and [typcstr2]. [typcstr1] and
[typcstr2] contain all parameters (including rec. unif. ones) of
their inductive.
if [typcstr1] and [typcstr2] are of the form:
forall recparams1, forall ordparams1, H1a -> H2a... (I1 x1 y1 ... z1)
forall recparams2, forall ordparams2, H2b -> H2b... (I2 x2 y2 ... z2)
we build:
forall recparams1 (recparams2 without linked params),
forall ordparams1 (ordparams2 without linked params),
H1a' -> H2a' -> ... -> H2a' -> H2b' -> ...
-> (newI x1 ... z1 x2 y2 ...z2 without linked params)
where Hix' have been adapted, ie:
- linked vars have been changed,
- rec calls to I1 and I2 have been replaced by rec calls to
newI. More precisely calls to I1 and I2 have been merge by an
experimental heuristic (in particular if n o rec calls for I1
or I2 is found, we use the conclusion as a rec call). See
[merge_types] above.
Precond: vars sets of [typcstr1] and [typcstr2] must be disjoint.
TODO: return nothing if equalities (after linking) are contradictory. *)
let merge_one_constructor (shift:merge_infos) (typcstr1:rawconstr)
(typcstr2:rawconstr) : rawconstr =
(* FIXME: les noms des parametres corerspondent en principe au
parametres du niveau mib, mais il faudrait s'en assurer *)
(* shift.nfunresprmsx last args are functional result *)
let nargs1 =
shift.mib1.mind_nparams + shift.oib1.mind_nrealargs - shift.nfunresprms1 in
let nargs2 =
shift.mib2.mind_nparams + shift.oib2.mind_nrealargs - shift.nfunresprms2 in
let allargs1,rest1 = raw_decompose_prod_n nargs1 typcstr1 in
let allargs2,rest2 = raw_decompose_prod_n nargs2 typcstr2 in
(* Build map of linked args of [typcstr2], and apply it to [typcstr2]. *)
let linked_map = build_link_map allargs1 allargs2 shift.lnk2 in
let rest2 = change_vars linked_map rest2 in
let hyps1,concl1 = raw_decompose_prod rest1 in
let hyps2,concl2' = raw_decompose_prod rest2 in
let ltyp,concl2 =
merge_types shift [] (List.rev hyps1) concl1 (List.rev hyps2) concl2' in
let typ = raw_compose_prod concl2 (List.rev ltyp) in
let revargs1 =
list_filteri (fun i _ -> isArg_stable shift.lnk1.(i)) (List.rev allargs1) in
let revargs2 =
list_filteri (fun i _ -> isArg_stable shift.lnk2.(i)) (List.rev allargs2) in
let typwithprms = raw_compose_prod typ (List.rev revargs2 @ List.rev revargs1) in
typwithprms
(** constructor numbering *)
let fresh_cstror_suffix , cstror_suffix_init =
let cstror_num = ref 0 in
(fun () ->
let res = string_of_int !cstror_num in
cstror_num := !cstror_num + 1;
res) ,
(fun () -> cstror_num := 0)
(** [merge_constructor_id id1 id2 shift] returns the identifier of the
new constructor from the id of the two merged constructor and
the merging info. *)
let merge_constructor_id id1 id2 shift:identifier =
let id = string_of_id shift.ident ^ "_" ^ fresh_cstror_suffix () in
next_ident_fresh (id_of_string id)
(** [merge_constructors lnk shift avoid] merges the two list of
constructor [(name*type)]. These are translated to rawterms
first, each of them having distinct var names. *)
let rec merge_constructors (shift:merge_infos) (avoid:Idset.t)
(typcstr1:(identifier * types) list)
(typcstr2:(identifier * types) list) : (identifier * rawconstr) list =
List.flatten
(List.map
(fun (id1,typ1) ->
let typ1 = substitterm 0 (mkRel 1) (mkVar ind1name) typ1 in
let rawtyp1 = Detyping.detype false (Idset.elements avoid) [] typ1 in
let idsoftyp1:Idset.t = ids_of_rawterm rawtyp1 in
List.map
(fun (id2,typ2) ->
let typ2 = substitterm 0 (mkRel 1) (mkVar ind2name) typ2 in
(* Avoid also rawtyp1 names *)
let avoid2 = Idset.union avoid idsoftyp1 in
let rawtyp2 = Detyping.detype false (Idset.elements avoid2) [] typ2 in
let typ = merge_one_constructor shift rawtyp1 rawtyp2 in
let newcstror_id = merge_constructor_id id1 id2 shift in
newcstror_id , typ)
typcstr2)
typcstr1)
(** [merge_inductive_body lnk shift avoid oib1 oib2] merges two
inductive bodies [oib1] and [oib2], linking with [lnk], params
info in [shift], avoiding identifiers in [avoid]. *)
let rec merge_inductive_body (shift:merge_infos) avoid (oib1:one_inductive_body)
(oib2:one_inductive_body) : (identifier * rawconstr) list =
let lcstr1 = Array.to_list oib1.mind_user_lc in
let lcstr2 = Array.to_list oib2.mind_user_lc in
let lcstr1 = List.combine (Array.to_list oib1.mind_consnames) lcstr1 in
let lcstr2 = List.combine (Array.to_list oib2.mind_consnames) lcstr2 in
cstror_suffix_init();
merge_constructors shift avoid lcstr1 lcstr2
(** [build_raw_params prms_decl avoid] returns a list of variables
attributed to the list of decl [prms_decl], avoiding names in
[avoid]. *)
let build_raw_params prms_decl avoid =
let dummy_constr = compose_prod prms_decl mkProp in
let dummy_rawconstr = Detyping.detype false avoid [] dummy_constr in
let res,_ = raw_decompose_prod dummy_rawconstr in
res , (avoid @ (Idset.elements (ids_of_rawterm dummy_rawconstr)))
(** [merge_mutual_inductive_body lnk mib1 mib2 shift] merge mutual
inductive bodies [mib1] and [mib2] linking vars with
[lnk]. [shift] information on parameters of the new inductive.
For the moment, inductives are supposed to be non mutual.
*)
let rec merge_mutual_inductive_body
(mib1:mutual_inductive_body) (mib2:mutual_inductive_body)
(shift:merge_infos) =
(* Mutual not treated, we take first ind body of each. *)
let nprms1 = mib1.mind_nparams_rec in (* n# of rec uniform parms of mib1 *)
let prms1 = (* rec uniform parms of mib1 *)
List.map (fun (x,_,y) -> x,y) (fst (list_chop nprms1 mib1.mind_params_ctxt)) in
(* useless: *)
let prms1_named,avoid' = build_raw_params prms1 [] in
let prms2_named,avoid = build_raw_params prms1 avoid' in
let avoid:Idset.t = List.fold_right Idset.add avoid Idset.empty in
(* *** *)
merge_inductive_body shift avoid mib1.mind_packets.(0) mib2.mind_packets.(0)
let merge_rec_params_and_arity params1 params2 shift (concl:constr) =
let params = shift.recprms1 @ shift.recprms2 in
let resparams, _ =
List.fold_left
(fun (acc,env) (nme,_,tp) ->
let typ = Constrextern.extern_constr false env tp in
let newenv = Environ.push_rel (nme,None,tp) env in
LocalRawAssum ([(dummy_loc,nme)] , typ) :: acc , newenv)
([],Global.env())
params in
let concl = Constrextern.extern_constr false (Global.env()) concl in
let arity,_ =
List.fold_left
(fun (acc,env) (nm,_,c) ->
let typ = Constrextern.extern_constr false env c in
let newenv = Environ.push_rel (nm,None,c) env in
CProdN (dummy_loc, [[(dummy_loc,nm)],typ] , acc) , newenv)
(concl,Global.env())
(shift.otherprms1@shift.otherprms2@shift.funresprms1@shift.funresprms2) in
resparams,arity
(** [rawterm_list_to_inductive_expr ident rawlist] returns the
induct_expr corresponding to the the list of constructor types
[rawlist], named ident.
FIXME: params et cstr_expr (arity) *)
let rawterm_list_to_inductive_expr mib1 mib2 shift
(rawlist:(identifier * rawconstr) list):inductive_expr =
let rawterm_to_constr_expr x = (* build a constr_expr from a rawconstr *)
Options.with_option Options.raw_print (Constrextern.extern_rawtype Idset.empty) x in
let lident = dummy_loc, shift.ident in
let bindlist , cstr_expr = (* params , arities *)
merge_rec_params_and_arity
mib1.mind_params_ctxt mib2.mind_params_ctxt shift mkSet in
let lcstor_expr : (bool * (lident * constr_expr)) list =
List.map (* zeta_normalize t ? *)
(fun (id,t) -> false, ((dummy_loc,id),rawterm_to_constr_expr t))
rawlist in
lident , bindlist , cstr_expr , lcstor_expr
(** [merge_inductive ind1 ind2 lnk] merges two graphs, linking
variables specified in [lnk]. Graphs are not supposed to be mutual
inductives for the moment. *)
let merge_inductive (ind1: inductive) (ind2: inductive)
(lnk1: linked_var array) (lnk2: linked_var array) id =
let env = Global.env() in
let mib1,_ = Inductive.lookup_mind_specif env ind1 in
let mib2,_ = Inductive.lookup_mind_specif env ind2 in
let _ = verify_inds mib1 mib2 in (* raises an exception if something wrong *)
(* compute params that become ordinary args (because linked to ord. args) *)
let shift_prm = shift_linked_params mib1 mib2 lnk1 lnk2 id in
let rawlist = merge_mutual_inductive_body mib1 mib2 shift_prm in
let indexpr = rawterm_list_to_inductive_expr mib1 mib2 shift_prm rawlist in
(* Declare inductive *)
Command.build_mutual [(indexpr,None)] true (* means: not coinductive *)
let merge (cstr1:constr) (cstr2:constr) (args1:constr array) (args2:constr array) id =
let env = Global.env() in
let ind1,_cstrlist1 = Inductiveops.find_inductive env Evd.empty cstr1 in
let ind2,_cstrlist2 = Inductiveops.find_inductive env Evd.empty cstr2 in
let lnk1 = (* args1 are unlinked. FIXME? mergescheme (G x x) ?? *)
Array.mapi (fun i c -> Unlinked) args1 in
let _ = lnk1.(Array.length lnk1 - 1) <- Funres in (* last arg is functional result *)
let lnk2 = (* args2 may be linked to args1 members. FIXME: same
as above: vars may be linked inside args2?? *)
Array.mapi
(fun i c ->
match array_find args1 (fun i x -> x=c) with
| Some j -> Linked j
| None -> Unlinked)
args2 in
let _ = lnk2.(Array.length lnk2 - 1) <- Funres in (* last arg is functional result *)
let resa = merge_inductive ind1 ind2 lnk1 lnk2 id in
resa
(* @article{ bundy93rippling,
author = "Alan Bundy and Andrew Stevens and Frank van Harmelen and Andrew Ireland and Alan Smaill",
title = "Rippling: A Heuristic for Guiding Inductive Proofs",
journal = "Artificial Intelligence",
volume = "62",
number = "2",
pages = "185-253",
year = "1993",
url = "citeseer.ist.psu.edu/bundy93rippling.html" }
*)
(*
*** Local Variables: ***
*** compile-command: "make -C ../.. contrib/funind/merge.cmo" ***
*** indent-tabs-mode: nil ***
*** End: ***
*)
|