1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
|
open Printer
open Util
open Term
open Termops
open Names
open Declarations
open Pp
open Entries
open Hiddentac
open Evd
open Tacmach
open Proof_type
open Tacticals
open Tactics
open Indfun_common
open Libnames
let msgnl = Pp.msgnl
let observe strm =
if do_observe ()
then Pp.msgnl strm
else ()
let observennl strm =
if do_observe ()
then begin Pp.msg strm;Pp.pp_flush () end
else ()
let do_observe_tac s tac g =
try let v = tac g in (* msgnl (goal ++ fnl () ++ (str s)++(str " ")++(str "finished")); *) v
with e ->
let goal = begin try (Printer.pr_goal (sig_it g)) with _ -> assert false end in
msgnl (str "observation "++ s++str " raised exception " ++
Cerrors.explain_exn e ++ str " on goal " ++ goal );
raise e;;
let observe_tac_stream s tac g =
if do_observe ()
then do_observe_tac s tac g
else tac g
let observe_tac s tac g = observe_tac_stream (str s) tac g
let tclTRYD tac =
if !Options.debug || do_observe ()
then (fun g -> try (* do_observe_tac "" *)tac g with _ -> tclIDTAC g)
else tac
let list_chop ?(msg="") n l =
try
list_chop n l
with Failure (msg') ->
failwith (msg ^ msg')
let make_refl_eq type_of_t t =
let refl_equal_term = Lazy.force refl_equal in
mkApp(refl_equal_term,[|type_of_t;t|])
type pte_info =
{
proving_tac : (identifier list -> Tacmach.tactic);
is_valid : constr -> bool
}
type ptes_info = pte_info Idmap.t
type 'a dynamic_info =
{
nb_rec_hyps : int;
rec_hyps : identifier list ;
eq_hyps : identifier list;
info : 'a
}
type body_info = constr dynamic_info
let finish_proof dynamic_infos g =
observe_tac "finish"
( h_assumption)
g
let refine c =
Tacmach.refine_no_check c
let thin l =
Tacmach.thin_no_check l
let cut_replacing id t tac :tactic=
tclTHENS (cut t)
[ tclTHEN (thin_no_check [id]) (introduction_no_check id);
tac
]
let intro_erasing id = tclTHEN (thin [id]) (introduction id)
let rec_hyp_id = id_of_string "rec_hyp"
let is_trivial_eq t =
match kind_of_term t with
| App(f,[|_;t1;t2|]) when eq_constr f (Lazy.force eq) ->
eq_constr t1 t2
| _ -> false
let rec incompatible_constructor_terms t1 t2 =
let c1,arg1 = decompose_app t1
and c2,arg2 = decompose_app t2
in
(not (eq_constr t1 t2)) &&
isConstruct c1 && isConstruct c2 &&
(
not (eq_constr c1 c2) ||
List.exists2 incompatible_constructor_terms arg1 arg2
)
let is_incompatible_eq t =
match kind_of_term t with
| App(f,[|_;t1;t2|]) when eq_constr f (Lazy.force eq) ->
incompatible_constructor_terms t1 t2
| _ -> false
let change_hyp_with_using msg hyp_id t tac : tactic =
fun g ->
let prov_id = pf_get_new_id hyp_id g in
tclTHENS
(observe_tac msg (forward (Some (tclCOMPLETE tac)) (Genarg.IntroIdentifier prov_id) t))
[tclTHENLIST
[
observe_tac "change_hyp_with_using thin" (thin [hyp_id]);
observe_tac "change_hyp_with_using rename " (h_rename prov_id hyp_id)
]] g
exception TOREMOVE
let prove_trivial_eq h_id context (type_of_term,term) =
let nb_intros = List.length context in
tclTHENLIST
[
tclDO nb_intros intro; (* introducing context *)
(fun g ->
let context_hyps =
fst (list_chop ~msg:"prove_trivial_eq : " nb_intros (pf_ids_of_hyps g))
in
let context_hyps' =
(mkApp(Lazy.force refl_equal,[|type_of_term;term|]))::
(List.map mkVar context_hyps)
in
let to_refine = applist(mkVar h_id,List.rev context_hyps') in
refine to_refine g
)
]
let isAppConstruct t =
if isApp t
then isConstruct (fst (destApp t))
else false
let nf_betaiotazeta = (* Reductionops.local_strong Reductionops.whd_betaiotazeta *)
let clos_norm_flags flgs env sigma t =
Closure.norm_val (Closure.create_clos_infos flgs env) (Closure.inject (Reductionops.nf_evar sigma t)) in
clos_norm_flags Closure.betaiotazeta Environ.empty_env Evd.empty
let change_eq env sigma hyp_id (context:Sign.rel_context) x t end_of_type =
let nochange msg =
begin
observe (str ("Not treating ( "^msg^" )") ++ pr_lconstr t );
failwith "NoChange";
end
in
let eq_constr = Reductionops.is_conv env sigma in
if not (noccurn 1 end_of_type)
then nochange "dependent"; (* if end_of_type depends on this term we don't touch it *)
if not (isApp t) then nochange "not an equality";
let f_eq,args = destApp t in
if not (eq_constr f_eq (Lazy.force eq)) then nochange "not an equality";
let t1 = args.(1)
and t2 = args.(2)
and t1_typ = args.(0)
in
if not (closed0 t1) then nochange "not a closed lhs";
let rec compute_substitution sub t1 t2 =
observe (str "compute_substitution : " ++ pr_lconstr t1 ++ str " === " ++ pr_lconstr t2);
if isRel t2
then
let t2 = destRel t2 in
begin
try
let t1' = Intmap.find t2 sub in
if not (eq_constr t1 t1') then nochange "twice bound variable";
sub
with Not_found ->
assert (closed0 t1);
Intmap.add t2 t1 sub
end
else if isAppConstruct t1 && isAppConstruct t2
then
begin
let c1,args1 = destApp t1
and c2,args2 = destApp t2
in
if not (eq_constr c1 c2) then anomaly "deconstructing equation";
array_fold_left2 compute_substitution sub args1 args2
end
else
if (eq_constr t1 t2) then sub else nochange "cannot solve"
in
let sub = compute_substitution Intmap.empty t1 t2 in
let end_of_type_with_pop = pop end_of_type in (*the equation will be removed *)
let new_end_of_type =
(* Ugly hack to prevent Map.fold order change between ocaml-3.08.3 and ocaml-3.08.4
Can be safely replaced by the next comment for Ocaml >= 3.08.4
*)
let sub' = Intmap.fold (fun i t acc -> (i,t)::acc) sub [] in
let sub'' = List.sort (fun (x,_) (y,_) -> Pervasives.compare x y) sub' in
List.fold_left (fun end_of_type (i,t) -> lift 1 (substnl [t] (i-1) end_of_type))
end_of_type_with_pop
sub''
in
let old_context_length = List.length context + 1 in
let witness_fun =
mkLetIn(Anonymous,make_refl_eq t1_typ t1,t,
mkApp(mkVar hyp_id,Array.init old_context_length (fun i -> mkRel (old_context_length - i)))
)
in
let new_type_of_hyp,ctxt_size,witness_fun =
list_fold_left_i
(fun i (end_of_type,ctxt_size,witness_fun) ((x',b',t') as decl) ->
try
let witness = Intmap.find i sub in
if b' <> None then anomaly "can not redefine a rel!";
(pop end_of_type,ctxt_size,mkLetIn(x',witness,t',witness_fun))
with Not_found ->
(mkProd_or_LetIn decl end_of_type, ctxt_size + 1, mkLambda_or_LetIn decl witness_fun)
)
1
(new_end_of_type,0,witness_fun)
context
in
let new_type_of_hyp = Reductionops.nf_betaiota new_type_of_hyp in
let new_ctxt,new_end_of_type =
Sign.decompose_prod_n_assum ctxt_size new_type_of_hyp
in
let prove_new_hyp : tactic =
tclTHEN
(tclDO ctxt_size intro)
(fun g ->
let all_ids = pf_ids_of_hyps g in
let new_ids,_ = list_chop ctxt_size all_ids in
let to_refine = applist(witness_fun,List.rev_map mkVar new_ids) in
refine to_refine g
)
in
let simpl_eq_tac =
change_hyp_with_using "prove_pattern_simplification" hyp_id new_type_of_hyp prove_new_hyp
in
(* observe (str "In " ++ Ppconstr.pr_id hyp_id ++ *)
(* str "removing an equation " ++ fnl ()++ *)
(* str "old_typ_of_hyp :=" ++ *)
(* Printer.pr_lconstr_env *)
(* env *)
(* (it_mkProd_or_LetIn ~init:end_of_type ((x,None,t)::context)) *)
(* ++ fnl () ++ *)
(* str "new_typ_of_hyp := "++ *)
(* Printer.pr_lconstr_env env new_type_of_hyp ++ fnl () *)
(* ++ str "old context := " ++ pr_rel_context env context ++ fnl () *)
(* ++ str "new context := " ++ pr_rel_context env new_ctxt ++ fnl () *)
(* ++ str "old type := " ++ pr_lconstr end_of_type ++ fnl () *)
(* ++ str "new type := " ++ pr_lconstr new_end_of_type ++ fnl () *)
(* ); *)
new_ctxt,new_end_of_type,simpl_eq_tac
let is_property ptes_info t_x full_type_of_hyp =
if isApp t_x
then
let pte,args = destApp t_x in
if isVar pte && array_for_all closed0 args
then
try
let info = Idmap.find (destVar pte) ptes_info in
info.is_valid full_type_of_hyp
with Not_found -> false
else false
else false
let isLetIn t =
match kind_of_term t with
| LetIn _ -> true
| _ -> false
let h_reduce_with_zeta =
h_reduce
(Rawterm.Cbv
{Rawterm.all_flags
with Rawterm.rDelta = false;
})
let rewrite_until_var arg_num eq_ids : tactic =
(* tests if the declares recursive argument is neither a Constructor nor
an applied Constructor since such a form for the recursive argument
will break the Guard when trying to save the Lemma.
*)
let test_var g =
let _,args = destApp (pf_concl g) in
not ((isConstruct args.(arg_num)) || isAppConstruct args.(arg_num))
in
let rec do_rewrite eq_ids g =
if test_var g
then tclIDTAC g
else
match eq_ids with
| [] -> anomaly "Cannot find a way to prove recursive property";
| eq_id::eq_ids ->
tclTHEN
(tclTRY (Equality.rewriteRL (mkVar eq_id)))
(do_rewrite eq_ids)
g
in
do_rewrite eq_ids
let rec_pte_id = id_of_string "Hrec"
let clean_hyp_with_heq ptes_infos eq_hyps hyp_id env sigma =
let coq_False = Coqlib.build_coq_False () in
let coq_True = Coqlib.build_coq_True () in
let coq_I = Coqlib.build_coq_I () in
let rec scan_type context type_of_hyp : tactic =
if isLetIn type_of_hyp then
let real_type_of_hyp = it_mkProd_or_LetIn ~init:type_of_hyp context in
let reduced_type_of_hyp = nf_betaiotazeta real_type_of_hyp in
(* length of context didn't change ? *)
let new_context,new_typ_of_hyp =
Sign.decompose_prod_n_assum (List.length context) reduced_type_of_hyp
in
tclTHENLIST
[
h_reduce_with_zeta
(Tacticals.onHyp hyp_id)
;
scan_type new_context new_typ_of_hyp
]
else if isProd type_of_hyp
then
begin
let (x,t_x,t') = destProd type_of_hyp in
let actual_real_type_of_hyp = it_mkProd_or_LetIn ~init:t' context in
if is_property ptes_infos t_x actual_real_type_of_hyp then
begin
let pte,pte_args = (destApp t_x) in
let (* fix_info *) prove_rec_hyp = (Idmap.find (destVar pte) ptes_infos).proving_tac in
let popped_t' = pop t' in
let real_type_of_hyp = it_mkProd_or_LetIn ~init:popped_t' context in
let prove_new_type_of_hyp =
let context_length = List.length context in
tclTHENLIST
[
tclDO context_length intro;
(fun g ->
let context_hyps_ids =
fst (list_chop ~msg:"rec hyp : context_hyps"
context_length (pf_ids_of_hyps g))
in
let rec_pte_id = pf_get_new_id rec_pte_id g in
let to_refine =
applist(mkVar hyp_id,
List.rev_map mkVar (rec_pte_id::context_hyps_ids)
)
in
observe_tac "rec hyp "
(tclTHENS
(assert_as true (Genarg.IntroIdentifier rec_pte_id) t_x)
[observe_tac "prove rec hyp" (prove_rec_hyp eq_hyps);
observe_tac "prove rec hyp"
(refine to_refine)
])
g
)
]
in
tclTHENLIST
[
observe_tac "hyp rec"
(change_hyp_with_using "rec_hyp_tac" hyp_id real_type_of_hyp prove_new_type_of_hyp);
scan_type context popped_t'
]
end
else if eq_constr t_x coq_False then
begin
(* observe (str "Removing : "++ Ppconstr.pr_id hyp_id++ *)
(* str " since it has False in its preconds " *)
(* ); *)
raise TOREMOVE; (* False -> .. useless *)
end
else if is_incompatible_eq t_x then raise TOREMOVE (* t_x := C1 ... = C2 ... *)
else if eq_constr t_x coq_True (* Trivial => we remove this precons *)
then
(* observe (str "In "++Ppconstr.pr_id hyp_id++ *)
(* str " removing useless precond True" *)
(* ); *)
let popped_t' = pop t' in
let real_type_of_hyp =
it_mkProd_or_LetIn ~init:popped_t' context
in
let prove_trivial =
let nb_intro = List.length context in
tclTHENLIST [
tclDO nb_intro intro;
(fun g ->
let context_hyps =
fst (list_chop ~msg:"removing True : context_hyps "nb_intro (pf_ids_of_hyps g))
in
let to_refine =
applist (mkVar hyp_id,
List.rev (coq_I::List.map mkVar context_hyps)
)
in
refine to_refine g
)
]
in
tclTHENLIST[
change_hyp_with_using "prove_trivial" hyp_id real_type_of_hyp
(observe_tac "prove_trivial" prove_trivial);
scan_type context popped_t'
]
else if is_trivial_eq t_x
then (* t_x := t = t => we remove this precond *)
let popped_t' = pop t' in
let real_type_of_hyp =
it_mkProd_or_LetIn ~init:popped_t' context
in
let _,args = destApp t_x in
tclTHENLIST
[
change_hyp_with_using
"prove_trivial_eq"
hyp_id
real_type_of_hyp
(observe_tac "prove_trivial_eq" (prove_trivial_eq hyp_id context (args.(0),args.(1))));
scan_type context popped_t'
]
else
begin
try
let new_context,new_t',tac = change_eq env sigma hyp_id context x t_x t' in
tclTHEN
tac
(scan_type new_context new_t')
with Failure "NoChange" ->
(* Last thing todo : push the rel in the context and continue *)
scan_type ((x,None,t_x)::context) t'
end
end
else
tclIDTAC
in
try
scan_type [] (Typing.type_of env sigma (mkVar hyp_id)), [hyp_id]
with TOREMOVE ->
thin [hyp_id],[]
let clean_goal_with_heq ptes_infos continue_tac dyn_infos =
fun g ->
let env = pf_env g
and sigma = project g
in
let tac,new_hyps =
List.fold_left (
fun (hyps_tac,new_hyps) hyp_id ->
let hyp_tac,new_hyp =
clean_hyp_with_heq ptes_infos dyn_infos.eq_hyps hyp_id env sigma
in
(tclTHEN hyp_tac hyps_tac),new_hyp@new_hyps
)
(tclIDTAC,[])
dyn_infos.rec_hyps
in
let new_infos =
{ dyn_infos with
rec_hyps = new_hyps;
nb_rec_hyps = List.length new_hyps
}
in
tclTHENLIST
[
tac ;
observe_tac "clean_hyp_with_heq continue" (continue_tac new_infos)
]
g
let heq_id = id_of_string "Heq"
let treat_new_case ptes_infos nb_prod continue_tac term dyn_infos =
fun g ->
let heq_id = pf_get_new_id heq_id g in
let nb_first_intro = nb_prod - 1 - dyn_infos.nb_rec_hyps in
tclTHENLIST
[
(* We first introduce the variables *)
tclDO nb_first_intro (intro_avoiding dyn_infos.rec_hyps);
(* Then the equation itself *)
introduction_no_check heq_id;
(* Then the new hypothesis *)
tclMAP introduction_no_check dyn_infos.rec_hyps;
observe_tac "after_introduction" (fun g' ->
(* We get infos on the equations introduced*)
let new_term_value_eq = pf_type_of g' (mkVar heq_id) in
(* compute the new value of the body *)
let new_term_value =
match kind_of_term new_term_value_eq with
| App(f,[| _;_;args2 |]) -> args2
| _ ->
observe (str "cannot compute new term value : " ++ pr_gls g' ++ fnl () ++ str "last hyp is" ++
pr_lconstr_env (pf_env g') new_term_value_eq
);
anomaly "cannot compute new term value"
in
let fun_body =
mkLambda(Anonymous,
pf_type_of g' term,
replace_term term (mkRel 1) dyn_infos.info
)
in
let new_body = pf_nf_betaiota g' (mkApp(fun_body,[| new_term_value |])) in
let new_infos =
{dyn_infos with
info = new_body;
eq_hyps = heq_id::dyn_infos.eq_hyps
}
in
clean_goal_with_heq ptes_infos continue_tac new_infos g'
)
]
g
let my_orelse tac1 tac2 g =
try
tac1 g
with e ->
(* observe (str "using snd tac since : " ++ Cerrors.explain_exn e); *)
tac2 g
let instanciate_hyps_with_args (do_prove:identifier list -> tactic) hyps args_id =
let args = Array.of_list (List.map mkVar args_id) in
let instanciate_one_hyp hid =
my_orelse
( (* we instanciate the hyp if possible *)
fun g ->
let prov_hid = pf_get_new_id hid g in
tclTHENLIST[
forward None (Genarg.IntroIdentifier prov_hid) (mkApp(mkVar hid,args));
thin [hid];
h_rename prov_hid hid
] g
)
( (*
if not then we are in a mutual function block
and this hyp is a recursive hyp on an other function.
We are not supposed to use it while proving this
principle so that we can trash it
*)
(fun g ->
(* observe (str "Instanciation: removing hyp " ++ Ppconstr.pr_id hid); *)
thin [hid] g
)
)
in
if args_id = []
then
tclTHENLIST [
tclMAP (fun hyp_id -> h_reduce_with_zeta (Tacticals.onHyp hyp_id)) hyps;
do_prove hyps
]
else
tclTHENLIST
[
tclMAP (fun hyp_id -> h_reduce_with_zeta (Tacticals.onHyp hyp_id)) hyps;
tclMAP instanciate_one_hyp hyps;
(fun g ->
let all_g_hyps_id =
List.fold_right Idset.add (pf_ids_of_hyps g) Idset.empty
in
let remaining_hyps =
List.filter (fun id -> Idset.mem id all_g_hyps_id) hyps
in
do_prove remaining_hyps g
)
]
let build_proof
(interactive_proof:bool)
(fnames:constant list)
ptes_infos
dyn_infos
: tactic =
let rec build_proof_aux do_finalize dyn_infos : tactic =
fun g ->
(* observe (str "proving on " ++ Printer.pr_lconstr_env (pf_env g) term);*)
match kind_of_term dyn_infos.info with
| Case(_,_,t,_) ->
let g_nb_prod = nb_prod (pf_concl g) in
let type_of_term = pf_type_of g t in
let term_eq =
make_refl_eq type_of_term t
in
tclTHENSEQ
[
h_generalize (term_eq::(List.map mkVar dyn_infos.rec_hyps));
thin dyn_infos.rec_hyps;
pattern_option [[-1],t] None;
h_simplest_case t;
(fun g' ->
let g'_nb_prod = nb_prod (pf_concl g') in
let nb_instanciate_partial = g'_nb_prod - g_nb_prod in
observe_tac "treat_new_case"
(treat_new_case
ptes_infos
nb_instanciate_partial
(build_proof do_finalize)
t
dyn_infos)
g'
)
] g
| Lambda(n,t,b) ->
begin
match kind_of_term( pf_concl g) with
| Prod _ ->
tclTHEN
intro
(fun g' ->
let (id,_,_) = pf_last_hyp g' in
let new_term =
pf_nf_betaiota g'
(mkApp(dyn_infos.info,[|mkVar id|]))
in
let new_infos = {dyn_infos with info = new_term} in
let do_prove new_hyps =
build_proof do_finalize
{new_infos with
rec_hyps = new_hyps;
nb_rec_hyps = List.length new_hyps
}
in
observe_tac "Lambda" (instanciate_hyps_with_args do_prove new_infos.rec_hyps [id]) g'
(* build_proof do_finalize new_infos g' *)
) g
| _ ->
do_finalize dyn_infos g
end
| Cast(t,_,_) ->
build_proof do_finalize {dyn_infos with info = t} g
| Const _ | Var _ | Meta _ | Evar _ | Sort _ | Construct _ | Ind _ ->
do_finalize dyn_infos g
| App(_,_) ->
let f,args = decompose_app dyn_infos.info in
begin
match kind_of_term f with
| App _ -> assert false (* we have collected all the app in decompose_app *)
| Var _ | Construct _ | Rel _ | Evar _ | Meta _ | Ind _ | Sort _ | Prod _ ->
let new_infos =
{ dyn_infos with
info = (f,args)
}
in
build_proof_args do_finalize new_infos g
| Const c when not (List.mem c fnames) ->
let new_infos =
{ dyn_infos with
info = (f,args)
}
in
(* Pp.msgnl (str "proving in " ++ pr_lconstr_env (pf_env g) dyn_infos.info); *)
build_proof_args do_finalize new_infos g
| Const _ ->
do_finalize dyn_infos g
| Lambda _ ->
let new_term = Reductionops.nf_beta dyn_infos.info in
build_proof do_finalize {dyn_infos with info = new_term}
g
| LetIn _ ->
let new_infos =
{ dyn_infos with info = nf_betaiotazeta dyn_infos.info }
in
tclTHENLIST
[tclMAP
(fun hyp_id -> h_reduce_with_zeta (Tacticals.onHyp hyp_id))
dyn_infos.rec_hyps;
h_reduce_with_zeta Tacticals.onConcl;
build_proof do_finalize new_infos
]
g
| Cast(b,_,_) ->
build_proof do_finalize {dyn_infos with info = b } g
| Case _ | Fix _ | CoFix _ ->
let new_finalize dyn_infos =
let new_infos =
{ dyn_infos with
info = dyn_infos.info,args
}
in
build_proof_args do_finalize new_infos
in
build_proof new_finalize {dyn_infos with info = f } g
end
| Fix _ | CoFix _ ->
error ( "Anonymous local (co)fixpoints are not handled yet")
| Prod _ -> error "Prod"
| LetIn _ ->
let new_infos =
{ dyn_infos with
info = nf_betaiotazeta dyn_infos.info
}
in
tclTHENLIST
[tclMAP
(fun hyp_id -> h_reduce_with_zeta (Tacticals.onHyp hyp_id))
dyn_infos.rec_hyps;
h_reduce_with_zeta Tacticals.onConcl;
build_proof do_finalize new_infos
] g
| Rel _ -> anomaly "Free var in goal conclusion !"
and build_proof do_finalize dyn_infos g =
(* observe (str "proving with "++Printer.pr_lconstr dyn_infos.info++ str " on goal " ++ pr_gls g); *)
(build_proof_aux do_finalize dyn_infos) g
and build_proof_args do_finalize dyn_infos (* f_args' args *) :tactic =
fun g ->
let (f_args',args) = dyn_infos.info in
let tac : tactic =
fun g ->
match args with
| [] ->
do_finalize {dyn_infos with info = f_args'} g
| arg::args ->
(* observe (str "build_proof_args with arg := "++ pr_lconstr_env (pf_env g) arg++ *)
(* fnl () ++ *)
(* pr_goal (Tacmach.sig_it g) *)
(* ); *)
let do_finalize dyn_infos =
let new_arg = dyn_infos.info in
(* tclTRYD *)
(build_proof_args
do_finalize
{dyn_infos with info = (mkApp(f_args',[|new_arg|])), args}
)
in
build_proof do_finalize
{dyn_infos with info = arg }
g
in
observe_tac "build_proof_args" (tac ) g
in
let do_finish_proof dyn_infos =
(* tclTRYD *) (clean_goal_with_heq
ptes_infos
finish_proof dyn_infos)
in
observe_tac "build_proof"
(build_proof (clean_goal_with_heq ptes_infos do_finish_proof) dyn_infos)
(* Proof of principles from structural functions *)
let is_pte_type t =
isSort (snd (decompose_prod t))
let is_pte (_,_,t) = is_pte_type t
type static_fix_info =
{
idx : int;
name : identifier;
types : types;
offset : int;
nb_realargs : int;
body_with_param : constr;
num_in_block : int
}
let prove_rec_hyp_for_struct fix_info =
(fun eq_hyps -> tclTHEN
(rewrite_until_var (fix_info.idx) eq_hyps)
(fun g ->
let _,pte_args = destApp (pf_concl g) in
let rec_hyp_proof =
mkApp(mkVar fix_info.name,array_get_start pte_args)
in
refine rec_hyp_proof g
))
let prove_rec_hyp fix_info =
{ proving_tac = prove_rec_hyp_for_struct fix_info
;
is_valid = fun _ -> true
}
exception Not_Rec
let generalize_non_dep hyp g =
(* observe (str "rec id := " ++ Ppconstr.pr_id hyp); *)
let hyps = [hyp] in
let env = Global.env () in
let hyp_typ = pf_type_of g (mkVar hyp) in
let to_revert,_ =
Environ.fold_named_context_reverse (fun (clear,keep) (hyp,_,_ as decl) ->
if List.mem hyp hyps
or List.exists (occur_var_in_decl env hyp) keep
or occur_var env hyp hyp_typ
or Termops.is_section_variable hyp (* should be dangerous *)
then (clear,decl::keep)
else (hyp::clear,keep))
~init:([],[]) (pf_env g)
in
(* observe (str "to_revert := " ++ prlist_with_sep spc Ppconstr.pr_id to_revert); *)
tclTHEN
(observe_tac "h_generalize" (h_generalize (List.map mkVar to_revert) ))
(observe_tac "thin" (thin to_revert))
g
let id_of_decl (na,_,_) = (Nameops.out_name na)
let var_of_decl decl = mkVar (id_of_decl decl)
let revert idl =
tclTHEN
(generalize (List.map mkVar idl))
(thin idl)
let generate_equation_lemma fnames f fun_num nb_params nb_args rec_args_num =
(* observe (str "nb_args := " ++ str (string_of_int nb_args)); *)
(* observe (str "nb_params := " ++ str (string_of_int nb_params)); *)
(* observe (str "rec_args_num := " ++ str (string_of_int (rec_args_num + 1) )); *)
let f_def = Global.lookup_constant (destConst f) in
let eq_lhs = mkApp(f,Array.init (nb_params + nb_args) (fun i -> mkRel(nb_params + nb_args - i))) in
let f_body =
force (out_some f_def.const_body)
in
let params,f_body_with_params = decompose_lam_n nb_params f_body in
let (_,num),(_,_,bodies) = destFix f_body_with_params in
let fnames_with_params =
let params = Array.init nb_params (fun i -> mkRel(nb_params - i)) in
let fnames = List.rev (Array.to_list (Array.map (fun f -> mkApp(f,params)) fnames)) in
fnames
in
(* observe (str "fnames_with_params " ++ prlist_with_sep fnl pr_lconstr fnames_with_params); *)
(* observe (str "body " ++ pr_lconstr bodies.(num)); *)
let f_body_with_params_and_other_fun = substl fnames_with_params bodies.(num) in
(* observe (str "f_body_with_params_and_other_fun " ++ pr_lconstr f_body_with_params_and_other_fun); *)
let eq_rhs = nf_betaiotazeta (mkApp(compose_lam params f_body_with_params_and_other_fun,Array.init (nb_params + nb_args) (fun i -> mkRel(nb_params + nb_args - i)))) in
(* observe (str "eq_rhs " ++ pr_lconstr eq_rhs); *)
let type_ctxt,type_of_f = Sign.decompose_prod_n_assum (nb_params + nb_args)
(Typeops.type_of_constant_type (Global.env()) f_def.const_type) in
let eqn = mkApp(Lazy.force eq,[|type_of_f;eq_lhs;eq_rhs|]) in
let lemma_type = it_mkProd_or_LetIn ~init:eqn type_ctxt in
let f_id = id_of_label (con_label (destConst f)) in
let prove_replacement =
tclTHENSEQ
[
tclDO (nb_params + rec_args_num + 1) intro;
observe_tac "" (fun g ->
let rec_id = pf_nth_hyp_id g 1 in
tclTHENSEQ
[observe_tac "generalize_non_dep in generate_equation_lemma" (generalize_non_dep rec_id);
observe_tac "h_case" (h_case(mkVar rec_id,Rawterm.NoBindings));
intros_reflexivity] g
)
]
in
Command.start_proof
(*i The next call to mk_equation_id is valid since we are constructing the lemma
Ensures by: obvious
i*)
(mk_equation_id f_id)
(Decl_kinds.Global,(Decl_kinds.Proof Decl_kinds.Theorem))
lemma_type
(fun _ _ -> ());
Pfedit.by (prove_replacement);
Command.save_named false
let do_replace params rec_arg_num rev_args_id f fun_num all_funs g =
let equation_lemma =
try
let finfos = find_Function_infos (destConst f) in
mkConst (out_some finfos.equation_lemma)
with (Not_found | Failure "out_some" as e) ->
let f_id = id_of_label (con_label (destConst f)) in
(*i The next call to mk_equation_id is valid since we will construct the lemma
Ensures by: obvious
i*)
let equation_lemma_id = (mk_equation_id f_id) in
generate_equation_lemma all_funs f fun_num (List.length params) (List.length rev_args_id) rec_arg_num;
let _ =
match e with
| Failure "out_some" ->
let finfos = find_Function_infos (destConst f) in
update_Function
{finfos with
equation_lemma = Some (match Nametab.locate (make_short_qualid equation_lemma_id) with
ConstRef c -> c
| _ -> Util.anomaly "Not a constant"
)
}
| _ -> ()
in
Tacinterp.constr_of_id (pf_env g) equation_lemma_id
in
let nb_intro_to_do = nb_prod (pf_concl g) in
tclTHEN
(tclDO nb_intro_to_do intro)
(
fun g' ->
let just_introduced = nLastHyps nb_intro_to_do g' in
let just_introduced_id = List.map (fun (id,_,_) -> id) just_introduced in
tclTHEN (Equality.rewriteLR equation_lemma) (revert just_introduced_id) g'
)
g
let prove_princ_for_struct interactive_proof fun_num fnames all_funs _nparams : tactic =
fun g ->
let princ_type = pf_concl g in
let princ_info = compute_elim_sig princ_type in
let fresh_id =
let avoid = ref (pf_ids_of_hyps g) in
(fun na ->
let new_id =
match na with
Name id -> fresh_id !avoid (string_of_id id)
| Anonymous -> fresh_id !avoid "H"
in
avoid := new_id :: !avoid;
(Name new_id)
)
in
let fresh_decl =
(fun (na,b,t) ->
(fresh_id na,b,t)
)
in
let princ_info : elim_scheme =
{ princ_info with
params = List.map fresh_decl princ_info.params;
predicates = List.map fresh_decl princ_info.predicates;
branches = List.map fresh_decl princ_info.branches;
args = List.map fresh_decl princ_info.args
}
in
let get_body const =
match (Global.lookup_constant const ).const_body with
| Some b ->
let body = force b in
Tacred.cbv_norm_flags
(Closure.RedFlags.mkflags [Closure.RedFlags.fZETA])
(Global.env ())
(Evd.empty)
body
| None -> error ( "Cannot define a principle over an axiom ")
in
let fbody = get_body fnames.(fun_num) in
let f_ctxt,f_body = decompose_lam fbody in
let f_ctxt_length = List.length f_ctxt in
let diff_params = princ_info.nparams - f_ctxt_length in
let full_params,princ_params,fbody_with_full_params =
if diff_params > 0
then
let princ_params,full_params =
list_chop diff_params princ_info.params
in
(full_params, (* real params *)
princ_params, (* the params of the principle which are not params of the function *)
substl (* function instanciated with real params *)
(List.map var_of_decl full_params)
f_body
)
else
let f_ctxt_other,f_ctxt_params =
list_chop (- diff_params) f_ctxt in
let f_body = compose_lam f_ctxt_other f_body in
(princ_info.params, (* real params *)
[],(* all params are full params *)
substl (* function instanciated with real params *)
(List.map var_of_decl princ_info.params)
f_body
)
in
(* observe (str "full_params := " ++ *)
(* prlist_with_sep spc (fun (na,_,_) -> Ppconstr.pr_id (Nameops.out_name na)) *)
(* full_params *)
(* ); *)
(* observe (str "princ_params := " ++ *)
(* prlist_with_sep spc (fun (na,_,_) -> Ppconstr.pr_id (Nameops.out_name na)) *)
(* princ_params *)
(* ); *)
(* observe (str "fbody_with_full_params := " ++ *)
(* pr_lconstr fbody_with_full_params *)
(* ); *)
let all_funs_with_full_params =
Array.map (fun f -> applist(f, List.rev_map var_of_decl full_params)) all_funs
in
let fix_offset = List.length princ_params in
let ptes_to_fix,infos =
match kind_of_term fbody_with_full_params with
| Fix((idxs,i),(names,typess,bodies)) ->
let bodies_with_all_params =
Array.map
(fun body ->
Reductionops.nf_betaiota
(applist(substl (List.rev (Array.to_list all_funs_with_full_params)) body,
List.rev_map var_of_decl princ_params))
)
bodies
in
let info_array =
Array.mapi
(fun i types ->
let types = prod_applist types (List.rev_map var_of_decl princ_params) in
{ idx = idxs.(i) - fix_offset;
name = Nameops.out_name (fresh_id names.(i));
types = types;
offset = fix_offset;
nb_realargs =
List.length
(fst (decompose_lam bodies.(i))) - fix_offset;
body_with_param = bodies_with_all_params.(i);
num_in_block = i
}
)
typess
in
let pte_to_fix,rev_info =
list_fold_left_i
(fun i (acc_map,acc_info) (pte,_,_) ->
let infos = info_array.(i) in
let type_args,_ = decompose_prod infos.types in
let nargs = List.length type_args in
let f = applist(mkConst fnames.(i), List.rev_map var_of_decl princ_info.params) in
let first_args = Array.init nargs (fun i -> mkRel (nargs -i)) in
let app_f = mkApp(f,first_args) in
let pte_args = (Array.to_list first_args)@[app_f] in
let app_pte = applist(mkVar (Nameops.out_name pte),pte_args) in
let body_with_param,num =
let body = get_body fnames.(i) in
let body_with_full_params =
Reductionops.nf_betaiota (
applist(body,List.rev_map var_of_decl full_params))
in
match kind_of_term body_with_full_params with
| Fix((_,num),(_,_,bs)) ->
Reductionops.nf_betaiota
(
(applist
(substl
(List.rev
(Array.to_list all_funs_with_full_params))
bs.(num),
List.rev_map var_of_decl princ_params))
),num
| _ -> error "Not a mutual block"
in
let info =
{infos with
types = compose_prod type_args app_pte;
body_with_param = body_with_param;
num_in_block = num
}
in
(* observe (str "binding " ++ Ppconstr.pr_id (Nameops.out_name pte) ++ *)
(* str " to " ++ Ppconstr.pr_id info.name); *)
(Idmap.add (Nameops.out_name pte) info acc_map,info::acc_info)
)
0
(Idmap.empty,[])
(List.rev princ_info.predicates)
in
pte_to_fix,List.rev rev_info
| _ -> Idmap.empty,[]
in
let mk_fixes : tactic =
let pre_info,infos = list_chop fun_num infos in
match pre_info,infos with
| [],[] -> tclIDTAC
| _, this_fix_info::others_infos ->
let other_fix_infos =
List.map
(fun fi -> fi.name,fi.idx + 1 ,fi.types)
(pre_info@others_infos)
in
if other_fix_infos = []
then
observe_tac ("h_fix") (h_fix (Some this_fix_info.name) (this_fix_info.idx +1))
else
h_mutual_fix this_fix_info.name (this_fix_info.idx + 1)
other_fix_infos
| _ -> anomaly "Not a valid information"
in
let first_tac : tactic = (* every operations until fix creations *)
tclTHENSEQ
[ observe_tac "introducing params" (intros_using (List.rev_map id_of_decl princ_info.params));
observe_tac "introducing predictes" (intros_using (List.rev_map id_of_decl princ_info.predicates));
observe_tac "introducing branches" (intros_using (List.rev_map id_of_decl princ_info.branches));
observe_tac "building fixes" mk_fixes;
]
in
let intros_after_fixes : tactic =
fun gl ->
let ctxt,pte_app = (Sign.decompose_prod_assum (pf_concl gl)) in
let pte,pte_args = (decompose_app pte_app) in
try
let pte = try destVar pte with _ -> anomaly "Property is not a variable" in
let fix_info = Idmap.find pte ptes_to_fix in
let nb_args = fix_info.nb_realargs in
tclTHENSEQ
[
observe_tac ("introducing args") (tclDO nb_args intro);
(fun g -> (* replacement of the function by its body *)
let args = nLastHyps nb_args g in
let fix_body = fix_info.body_with_param in
(* observe (str "fix_body := "++ pr_lconstr_env (pf_env gl) fix_body); *)
let args_id = List.map (fun (id,_,_) -> id) args in
let dyn_infos =
{
nb_rec_hyps = -100;
rec_hyps = [];
info =
Reductionops.nf_betaiota
(applist(fix_body,List.rev_map mkVar args_id));
eq_hyps = []
}
in
tclTHENSEQ
[
observe_tac "do_replace"
(do_replace
full_params
(fix_info.idx + List.length princ_params)
(args_id@(List.map (fun (id,_,_) -> Nameops.out_name id ) princ_params))
(all_funs.(fix_info.num_in_block))
fix_info.num_in_block
all_funs
);
(* observe_tac "do_replace" *)
(* (do_replace princ_info.params fix_info.idx args_id *)
(* (List.hd (List.rev pte_args)) fix_body); *)
let do_prove =
build_proof
interactive_proof
(Array.to_list fnames)
(Idmap.map prove_rec_hyp ptes_to_fix)
in
let prove_tac branches =
let dyn_infos =
{dyn_infos with
rec_hyps = branches;
nb_rec_hyps = List.length branches
}
in
observe_tac "cleaning" (clean_goal_with_heq
(Idmap.map prove_rec_hyp ptes_to_fix)
do_prove
dyn_infos)
in
(* observe (str "branches := " ++ *)
(* prlist_with_sep spc (fun decl -> Ppconstr.pr_id (id_of_decl decl)) princ_info.branches ++ fnl () ++ *)
(* str "args := " ++ prlist_with_sep spc Ppconstr.pr_id args_id *)
(* ); *)
observe_tac "instancing" (instanciate_hyps_with_args prove_tac
(List.rev_map id_of_decl princ_info.branches)
(List.rev args_id))
]
g
);
] gl
with Not_found ->
let nb_args = min (princ_info.nargs) (List.length ctxt) in
tclTHENSEQ
[
tclDO nb_args intro;
(fun g -> (* replacement of the function by its body *)
let args = nLastHyps nb_args g in
let args_id = List.map (fun (id,_,_) -> id) args in
let dyn_infos =
{
nb_rec_hyps = -100;
rec_hyps = [];
info =
Reductionops.nf_betaiota
(applist(fbody_with_full_params,
(List.rev_map var_of_decl princ_params)@
(List.rev_map mkVar args_id)
));
eq_hyps = []
}
in
let fname = destConst (fst (decompose_app (List.hd (List.rev pte_args)))) in
tclTHENSEQ
[unfold_in_concl [([],Names.EvalConstRef fname)];
let do_prove =
build_proof
interactive_proof
(Array.to_list fnames)
(Idmap.map prove_rec_hyp ptes_to_fix)
in
let prove_tac branches =
let dyn_infos =
{dyn_infos with
rec_hyps = branches;
nb_rec_hyps = List.length branches
}
in
clean_goal_with_heq
(Idmap.map prove_rec_hyp ptes_to_fix)
do_prove
dyn_infos
in
instanciate_hyps_with_args prove_tac
(List.rev_map id_of_decl princ_info.branches)
(List.rev args_id)
]
g
)
]
gl
in
tclTHEN
first_tac
intros_after_fixes
g
(* Proof of principles of general functions *)
let h_id = Recdef.h_id
and hrec_id = Recdef.hrec_id
and acc_inv_id = Recdef.acc_inv_id
and ltof_ref = Recdef.ltof_ref
and acc_rel = Recdef.acc_rel
and well_founded = Recdef.well_founded
and delayed_force = Recdef.delayed_force
and h_intros = Recdef.h_intros
and list_rewrite = Recdef.list_rewrite
and evaluable_of_global_reference = Recdef.evaluable_of_global_reference
let prove_with_tcc tcc_lemma_constr eqs : tactic =
match !tcc_lemma_constr with
| None -> anomaly "No tcc proof !!"
| Some lemma ->
fun gls ->
let hid = next_global_ident_away true h_id (pf_ids_of_hyps gls) in
tclTHENSEQ
[
generalize [lemma];
h_intro hid;
Elim.h_decompose_and (mkVar hid);
tclTRY(list_rewrite true eqs);
Eauto.gen_eauto false (false,5) [] (Some [])
]
gls
let backtrack_eqs_until_hrec hrec eqs : tactic =
fun gls ->
let rewrite =
tclFIRST (List.map Equality.rewriteRL eqs )
in
let _,hrec_concl = decompose_prod (pf_type_of gls (mkVar hrec)) in
let f_app = array_last (snd (destApp hrec_concl)) in
let f = (fst (destApp f_app)) in
let rec backtrack : tactic =
fun g ->
let f_app = array_last (snd (destApp (pf_concl g))) in
match kind_of_term f_app with
| App(f',_) when eq_constr f' f -> tclIDTAC g
| _ -> tclTHEN rewrite backtrack g
in
backtrack gls
let new_prove_with_tcc is_mes acc_inv hrec tcc_lemma_constr eqs : tactic =
match !tcc_lemma_constr with
| None -> tclIDTAC_MESSAGE (str "No tcc proof !!")
| Some lemma ->
fun gls ->
let hid = next_global_ident_away true Recdef.h_id (pf_ids_of_hyps gls) in
(tclTHENSEQ
[
generalize [lemma];
h_intro hid;
Elim.h_decompose_and (mkVar hid);
backtrack_eqs_until_hrec hrec eqs;
observe_tac ("new_prove_with_tcc ( applying "^(string_of_id hrec)^" )" )
(tclTHENS (* We must have exactly ONE subgoal !*)
(apply (mkVar hrec))
[ tclTHENSEQ
[
thin [hrec];
apply (Lazy.force acc_inv);
(fun g ->
if is_mes
then
unfold_in_concl [([], evaluable_of_global_reference (delayed_force ltof_ref))] g
else tclIDTAC g
);
observe_tac "rew_and_finish"
(tclTHEN
(tclTRY(Recdef.list_rewrite true eqs))
(observe_tac "finishing" (tclCOMPLETE (Eauto.gen_eauto false (false,5) [] (Some [])))))
]
])
])
gls
let is_valid_hypothesis predicates_name =
let predicates_name = List.fold_right Idset.add predicates_name Idset.empty in
let is_pte typ =
if isApp typ
then
let pte,_ = destApp typ in
if isVar pte
then Idset.mem (destVar pte) predicates_name
else false
else false
in
let rec is_valid_hypothesis typ =
is_pte typ ||
match kind_of_term typ with
| Prod(_,pte,typ') -> is_pte pte && is_valid_hypothesis typ'
| _ -> false
in
is_valid_hypothesis
(*
let fresh_id avoid na =
let id =
match na with
| Name id -> id
| Anonymous -> h_id
in
next_global_ident_away true id avoid
let prove_principle_for_gen
(f_ref,functional_ref,eq_ref) tcc_lemma_ref is_mes
rec_arg_num rec_arg_type relation =
fun g ->
let type_of_goal = pf_concl g in
let goal_ids = pf_ids_of_hyps g in
let goal_elim_infos = compute_elim_sig type_of_goal in
let params_names,ids = List.fold_left
(fun (params_names,avoid) (na,_,_) ->
let new_id = fresh_id avoid na in
(new_id::params_names,new_id::avoid)
)
([],goal_ids)
goal_elim_infos.params
in
let predicates_names,ids =
List.fold_left
(fun (predicates_names,avoid) (na,_,_) ->
let new_id = fresh_id avoid na in
(new_id::predicates_names,new_id::avoid)
)
([],ids)
goal_elim_infos.predicates
in
let branches_names,ids =
List.fold_left
(fun (branches_names,avoid) (na,_,_) ->
let new_id = fresh_id avoid na in
(new_id::branches_names,new_id::avoid)
)
([],ids)
goal_elim_infos.branches
in
let to_intro = params_names@predicates_names@branches_names in
let nparams = List.length params_names in
let rec_arg_num = rec_arg_num - nparams in
let tac_intro_static = h_intros to_intro in
let args_info = ref None in
let arg_tac g = (* introducing args *)
let ids = pf_ids_of_hyps g in
let func_body = def_of_const (mkConst functional_ref) in
(* let _ = Pp.msgnl (Printer.pr_lconstr func_body) in *)
let (f_name, _, body1) = destLambda func_body in
let f_id =
match f_name with
| Name f_id -> next_global_ident_away true f_id ids
| Anonymous -> anomaly "anonymous function"
in
let n_names_types,_ = decompose_lam body1 in
let n_ids,ids =
List.fold_left
(fun (n_ids,ids) (n_name,_) ->
match n_name with
| Name id ->
let n_id = next_global_ident_away true id ids in
n_id::n_ids,n_id::ids
| _ -> anomaly "anonymous argument"
)
([],(f_id::ids))
n_names_types
in
let rec_arg_id = List.nth n_ids (rec_arg_num - 1 ) in
let args_ids = snd (list_chop nparams n_ids) in
args_info := Some (ids,args_ids,rec_arg_id);
h_intros args_ids g
in
let wf_tac =
if is_mes
then
(fun b -> Recdef.tclUSER_if_not_mes b None)
else fun _ -> prove_with_tcc tcc_lemma_ref []
in
let start_tac g =
let ids,args_ids,rec_arg_id = out_some !args_info in
let nargs = List.length args_ids in
let pre_rec_arg =
List.rev_map
mkVar
(fst (list_chop (rec_arg_num - 1) args_ids))
in
let args_before_rec = pre_rec_arg@(List.map mkVar params_names) in
let relation = substl args_before_rec relation in
let input_type = substl args_before_rec rec_arg_type in
let wf_thm = next_global_ident_away true (id_of_string ("wf_R")) ids in
let wf_rec_arg =
next_global_ident_away true
(id_of_string ("Acc_"^(string_of_id rec_arg_id)))
(wf_thm::ids)
in
let hrec = next_global_ident_away true hrec_id (wf_rec_arg::wf_thm::ids) in
let acc_inv =
lazy (
mkApp (
delayed_force acc_inv_id,
[|input_type;relation;mkVar rec_arg_id|]
)
)
in
(tclTHENS
(observe_tac
"first assert"
(assert_tac
true (* the assert thm is in first subgoal *)
(Name wf_rec_arg)
(mkApp (delayed_force acc_rel,
[|input_type;relation;mkVar rec_arg_id|])
)
)
)
[
(* accesibility proof *)
tclTHENS
(observe_tac
"second assert"
(assert_tac
true
(Name wf_thm)
(mkApp (delayed_force well_founded,[|input_type;relation|]))
)
)
[
(* interactive proof of the well_foundness of the relation *)
wf_tac is_mes;
(* well_foundness -> Acc for any element *)
observe_tac
"apply wf_thm"
(h_apply ((mkApp(mkVar wf_thm,
[|mkVar rec_arg_id |])),Rawterm.NoBindings)
)
]
;
(* rest of the proof *)
tclTHENSEQ
[
observe_tac "generalize" (fun g ->
let to_thin =
fst (list_chop ( nargs + 1) (pf_ids_of_hyps g))
in
let to_thin_c = List.rev_map mkVar to_thin in
tclTHEN (generalize to_thin_c) (observe_tac "thin" (h_clear false to_thin)) g
);
observe_tac "h_fix" (h_fix (Some hrec) (nargs+1));
h_intros args_ids;
h_intro wf_rec_arg;
Equality.rewriteLR (mkConst eq_ref);
(fun g' ->
let body =
let _,args = destApp (pf_concl g') in
array_last args
in
let body_info rec_hyps =
{
nb_rec_hyps = List.length rec_hyps;
rec_hyps = rec_hyps;
eq_hyps = [];
info = body
}
in
let acc_inv = lazy (mkApp(Lazy.force acc_inv, [|mkVar wf_rec_arg|]) ) in
let pte_info =
{ proving_tac =
(fun eqs ->
observe_tac "new_prove_with_tcc"
(new_prove_with_tcc is_mes acc_inv hrec tcc_lemma_ref (List.map mkVar eqs))
);
is_valid = is_valid_hypothesis predicates_names
}
in
let ptes_info : pte_info Idmap.t =
List.fold_left
(fun map pte_id ->
Idmap.add pte_id
pte_info
map
)
Idmap.empty
predicates_names
in
let make_proof rec_hyps =
build_proof
false
[f_ref]
ptes_info
(body_info rec_hyps)
in
instanciate_hyps_with_args
make_proof
branches_names
args_ids
g'
)
]
]
g
)
in
tclTHENSEQ
[tac_intro_static;
arg_tac;
start_tac
] g
*)
let prove_principle_for_gen
(f_ref,functional_ref,eq_ref) tcc_lemma_ref is_mes
rec_arg_num rec_arg_type relation gl =
let princ_type = pf_concl gl in
let princ_info = compute_elim_sig princ_type in
let fresh_id =
let avoid = ref (pf_ids_of_hyps gl) in
fun na ->
let new_id =
match na with
| Name id -> fresh_id !avoid (string_of_id id)
| Anonymous -> fresh_id !avoid "H"
in
avoid := new_id :: !avoid;
Name new_id
in
let fresh_decl (na,b,t) = (fresh_id na,b,t) in
let princ_info : elim_scheme =
{ princ_info with
params = List.map fresh_decl princ_info.params;
predicates = List.map fresh_decl princ_info.predicates;
branches = List.map fresh_decl princ_info.branches;
args = List.map fresh_decl princ_info.args
}
in
let wf_tac =
if is_mes
then
(fun b -> Recdef.tclUSER_if_not_mes b None)
else fun _ -> prove_with_tcc tcc_lemma_ref []
in
let real_rec_arg_num = rec_arg_num - princ_info.nparams in
let npost_rec_arg = princ_info.nargs - real_rec_arg_num + 1 in
let (post_rec_arg,pre_rec_arg) =
Util.list_chop npost_rec_arg princ_info.args
in
let rec_arg_id =
match post_rec_arg with
| (Name id,_,_)::_ -> id
| _ -> assert false
in
let subst_constrs = List.map (fun (na,_,_) -> mkVar (Nameops.out_name na)) (pre_rec_arg@princ_info.params) in
let relation = substl subst_constrs relation in
let input_type = substl subst_constrs rec_arg_type in
let wf_thm_id = Nameops.out_name (fresh_id (Name (id_of_string "wf_R"))) in
let acc_rec_arg_id =
Nameops.out_name (fresh_id (Name (id_of_string ("Acc_"^(string_of_id rec_arg_id)))))
in
let revert l =
tclTHEN (h_generalize (List.map mkVar l)) (clear l)
in
let fix_id = Nameops.out_name (fresh_id (Name hrec_id)) in
let prove_rec_arg_acc g =
(observe_tac "prove_rec_arg_acc"
(tclCOMPLETE
(tclTHEN
(forward
(Some ((fun g -> observe_tac "prove wf" (tclCOMPLETE (wf_tac is_mes)) g)))
(Genarg.IntroIdentifier wf_thm_id)
(mkApp (delayed_force well_founded,[|input_type;relation|])))
(
observe_tac
"apply wf_thm"
(h_apply ((mkApp(mkVar wf_thm_id,
[|mkVar rec_arg_id |])),Rawterm.NoBindings)
)
)
)
)
)
g
in
let args_ids = List.map (fun (na,_,_) -> Nameops.out_name na) princ_info.args in
tclTHENSEQ
[
h_intros
(List.rev_map (fun (na,_,_) -> Nameops.out_name na)
(princ_info.args@princ_info.branches@princ_info.predicates@princ_info.params)
);
observe_tac "" (forward
(Some (prove_rec_arg_acc))
(Genarg.IntroIdentifier acc_rec_arg_id)
(mkApp (delayed_force acc_rel,[|input_type;relation;mkVar rec_arg_id|]))
);
observe_tac "reverting" (revert (List.rev (acc_rec_arg_id::args_ids)));
observe_tac "h_fix" (h_fix (Some fix_id) (real_rec_arg_num + 1));
h_intros (List.rev (acc_rec_arg_id::args_ids));
Equality.rewriteLR (mkConst eq_ref);
observe_tac "finish" (fun gl' ->
let body =
let _,args = destApp (pf_concl gl') in
array_last args
in
let body_info rec_hyps =
{
nb_rec_hyps = List.length rec_hyps;
rec_hyps = rec_hyps;
eq_hyps = [];
info = body
}
in
let acc_inv =
lazy (
mkApp (
delayed_force acc_inv_id,
[|input_type;relation;mkVar rec_arg_id|]
)
)
in
let acc_inv = lazy (mkApp(Lazy.force acc_inv, [|mkVar acc_rec_arg_id|])) in
let predicates_names =
List.map (fun (na,_,_) -> Nameops.out_name na) princ_info.predicates
in
let pte_info =
{ proving_tac =
(fun eqs ->
observe_tac "new_prove_with_tcc"
(new_prove_with_tcc
is_mes acc_inv fix_id tcc_lemma_ref (List.map mkVar eqs)
)
);
is_valid = is_valid_hypothesis predicates_names
}
in
let ptes_info : pte_info Idmap.t =
List.fold_left
(fun map pte_id ->
Idmap.add pte_id
pte_info
map
)
Idmap.empty
predicates_names
in
let make_proof rec_hyps =
build_proof
false
[f_ref]
ptes_info
(body_info rec_hyps)
in
observe_tac "instanciate_hyps_with_args"
(instanciate_hyps_with_args
make_proof
(List.map (fun (na,_,_) -> Nameops.out_name na) princ_info.branches)
(List.rev args_ids)
)
gl'
)
]
gl
|