1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i $Id: unify.ml 11897 2009-02-09 19:28:02Z barras $ i*)
open Util
open Formula
open Tacmach
open Term
open Names
open Termops
open Reductionops
exception UFAIL of constr*constr
(*
RIGID-only Martelli-Montanari style unification for CLOSED terms
I repeat : t1 and t2 must NOT have ANY free deBruijn
sigma is kept normal with respect to itself but is lazily applied
to the equation set. Raises UFAIL with a pair of terms
*)
let unif t1 t2=
let bige=Queue.create ()
and sigma=ref [] in
let bind i t=
sigma:=(i,t)::
(List.map (function (n,tn)->(n,subst_meta [i,t] tn)) !sigma) in
let rec head_reduce t=
(* forbids non-sigma-normal meta in head position*)
match kind_of_term t with
Meta i->
(try
head_reduce (List.assoc i !sigma)
with Not_found->t)
| _->t in
Queue.add (t1,t2) bige;
try while true do
let t1,t2=Queue.take bige in
let nt1=head_reduce (whd_betaiotazeta Evd.empty t1)
and nt2=head_reduce (whd_betaiotazeta Evd.empty t2) in
match (kind_of_term nt1),(kind_of_term nt2) with
Meta i,Meta j->
if i<>j then
if i<j then bind j nt1
else bind i nt2
| Meta i,_ ->
let t=subst_meta !sigma nt2 in
if Intset.is_empty (free_rels t) &&
not (occur_term (mkMeta i) t) then
bind i t else raise (UFAIL(nt1,nt2))
| _,Meta i ->
let t=subst_meta !sigma nt1 in
if Intset.is_empty (free_rels t) &&
not (occur_term (mkMeta i) t) then
bind i t else raise (UFAIL(nt1,nt2))
| Cast(_,_,_),_->Queue.add (strip_outer_cast nt1,nt2) bige
| _,Cast(_,_,_)->Queue.add (nt1,strip_outer_cast nt2) bige
| (Prod(_,a,b),Prod(_,c,d))|(Lambda(_,a,b),Lambda(_,c,d))->
Queue.add (a,c) bige;Queue.add (pop b,pop d) bige
| Case (_,pa,ca,va),Case (_,pb,cb,vb)->
Queue.add (pa,pb) bige;
Queue.add (ca,cb) bige;
let l=Array.length va in
if l<>(Array.length vb) then
raise (UFAIL (nt1,nt2))
else
for i=0 to l-1 do
Queue.add (va.(i),vb.(i)) bige
done
| App(ha,va),App(hb,vb)->
Queue.add (ha,hb) bige;
let l=Array.length va in
if l<>(Array.length vb) then
raise (UFAIL (nt1,nt2))
else
for i=0 to l-1 do
Queue.add (va.(i),vb.(i)) bige
done
| _->if not (eq_constr nt1 nt2) then raise (UFAIL (nt1,nt2))
done;
assert false
(* this place is unreachable but needed for the sake of typing *)
with Queue.Empty-> !sigma
let value i t=
let add x y=
if x<0 then y else if y<0 then x else x+y in
let tref=mkMeta i in
let rec vaux term=
if term=tref then 0 else
let f v t=add v (vaux t) in
let vr=fold_constr f (-1) term in
if vr<0 then -1 else vr+1 in
vaux t
type instance=
Real of (int*constr)*int
| Phantom of constr
let mk_rel_inst t=
let new_rel=ref 1 in
let rel_env=ref [] in
let rec renum_rec d t=
match kind_of_term t with
Meta n->
(try
mkRel (d+(List.assoc n !rel_env))
with Not_found->
let m= !new_rel in
incr new_rel;
rel_env:=(n,m) :: !rel_env;
mkRel (m+d))
| _ -> map_constr_with_binders succ renum_rec d t
in
let nt=renum_rec 0 t in (!new_rel - 1,nt)
let unif_atoms i dom t1 t2=
try
let t=List.assoc i (unif t1 t2) in
if isMeta t then Some (Phantom dom)
else Some (Real(mk_rel_inst t,value i t1))
with
UFAIL(_,_) ->None
| Not_found ->Some (Phantom dom)
let renum_metas_from k n t= (* requires n = max (free_rels t) *)
let l=list_tabulate (fun i->mkMeta (k+i)) n in
substl l t
let more_general (m1,t1) (m2,t2)=
let mt1=renum_metas_from 0 m1 t1
and mt2=renum_metas_from m1 m2 t2 in
try
let sigma=unif mt1 mt2 in
let p (n,t)= n<m1 || isMeta t in
List.for_all p sigma
with UFAIL(_,_)->false
|