1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: sequent.ml 11282 2008-07-28 11:51:53Z msozeau $ *)
open Term
open Util
open Formula
open Unify
open Tacmach
open Names
open Libnames
open Pp
let newcnt ()=
let cnt=ref (-1) in
fun b->if b then incr cnt;!cnt
let priority = (* pure heuristics, <=0 for non reversible *)
function
Right rf->
begin
match rf with
Rarrow -> 100
| Rand -> 40
| Ror -> -15
| Rfalse -> -50
| Rforall -> 100
| Rexists (_,_,_) -> -29
end
| Left lf ->
match lf with
Lfalse -> 999
| Land _ -> 90
| Lor _ -> 40
| Lforall (_,_,_) -> -30
| Lexists _ -> 60
| LA(_,lap) ->
match lap with
LLatom -> 0
| LLfalse (_,_) -> 100
| LLand (_,_) -> 80
| LLor (_,_) -> 70
| LLforall _ -> -20
| LLexists (_,_) -> 50
| LLarrow (_,_,_) -> -10
let left_reversible lpat=(priority lpat)>0
module OrderedFormula=
struct
type t=Formula.t
let compare e1 e2=
(priority e1.pat) - (priority e2.pat)
end
(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare
the immediate subterms of [c1] of [c2] if needed; Cast's,
application associativity, binders name and Cases annotations are
not taken into account *)
let rec compare_list f l1 l2=
match l1,l2 with
[],[]-> 0
| [],_ -> -1
| _,[] -> 1
| (h1::q1),(h2::q2) -> (f =? (compare_list f)) h1 h2 q1 q2
let compare_array f v1 v2=
let l=Array.length v1 in
let c=l - Array.length v2 in
if c=0 then
let rec comp_aux i=
if i<0 then 0
else
let ci=f v1.(i) v2.(i) in
if ci=0 then
comp_aux (i-1)
else ci
in comp_aux (l-1)
else c
let compare_constr_int f t1 t2 =
match kind_of_term t1, kind_of_term t2 with
| Rel n1, Rel n2 -> n1 - n2
| Meta m1, Meta m2 -> m1 - m2
| Var id1, Var id2 -> Pervasives.compare id1 id2
| Sort s1, Sort s2 -> Pervasives.compare s1 s2
| Cast (c1,_,_), _ -> f c1 t2
| _, Cast (c2,_,_) -> f t1 c2
| Prod (_,t1,c1), Prod (_,t2,c2)
| Lambda (_,t1,c1), Lambda (_,t2,c2) ->
(f =? f) t1 t2 c1 c2
| LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) ->
((f =? f) ==? f) b1 b2 t1 t2 c1 c2
| App (_,_), App (_,_) ->
let c1,l1=decompose_app t1
and c2,l2=decompose_app t2 in
(f =? (compare_list f)) c1 c2 l1 l2
| Evar (e1,l1), Evar (e2,l2) ->
((-) =? (compare_array f)) e1 e2 l1 l2
| Const c1, Const c2 -> Pervasives.compare c1 c2
| Ind c1, Ind c2 -> Pervasives.compare c1 c2
| Construct c1, Construct c2 -> Pervasives.compare c1 c2
| Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
((f =? f) ==? (compare_array f)) p1 p2 c1 c2 bl1 bl2
| Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) ->
((Pervasives.compare =? (compare_array f)) ==? (compare_array f))
ln1 ln2 tl1 tl2 bl1 bl2
| CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
((Pervasives.compare =? (compare_array f)) ==? (compare_array f))
ln1 ln2 tl1 tl2 bl1 bl2
| _ -> Pervasives.compare t1 t2
let rec compare_constr m n=
compare_constr_int compare_constr m n
module OrderedConstr=
struct
type t=constr
let compare=compare_constr
end
type h_item = global_reference * (int*constr) option
module Hitem=
struct
type t = h_item
let compare (id1,co1) (id2,co2)=
(Pervasives.compare
=? (fun oc1 oc2 ->
match oc1,oc2 with
Some (m1,c1),Some (m2,c2) ->
((-) =? OrderedConstr.compare) m1 m2 c1 c2
| _,_->Pervasives.compare oc1 oc2)) id1 id2 co1 co2
end
module CM=Map.Make(OrderedConstr)
module History=Set.Make(Hitem)
let cm_add typ nam cm=
try
let l=CM.find typ cm in CM.add typ (nam::l) cm
with
Not_found->CM.add typ [nam] cm
let cm_remove typ nam cm=
try
let l=CM.find typ cm in
let l0=List.filter (fun id->id<>nam) l in
match l0 with
[]->CM.remove typ cm
| _ ->CM.add typ l0 cm
with Not_found ->cm
module HP=Heap.Functional(OrderedFormula)
type t=
{redexes:HP.t;
context:(global_reference list) CM.t;
latoms:constr list;
gl:types;
glatom:constr option;
cnt:counter;
history:History.t;
depth:int}
let deepen seq={seq with depth=seq.depth-1}
let record item seq={seq with history=History.add item seq.history}
let lookup item seq=
History.mem item seq.history ||
match item with
(_,None)->false
| (id,Some ((m,t) as c))->
let p (id2,o)=
match o with
None -> false
| Some ((m2,t2) as c2)->id=id2 && m2>m && more_general c2 c in
History.exists p seq.history
let rec add_formula side nam t seq gl=
match build_formula side nam t gl seq.cnt with
Left f->
begin
match side with
Concl ->
{seq with
redexes=HP.add f seq.redexes;
gl=f.constr;
glatom=None}
| _ ->
{seq with
redexes=HP.add f seq.redexes;
context=cm_add f.constr nam seq.context}
end
| Right t->
match side with
Concl ->
{seq with gl=t;glatom=Some t}
| _ ->
{seq with
context=cm_add t nam seq.context;
latoms=t::seq.latoms}
let re_add_formula_list lf seq=
let do_one f cm=
if f.id == dummy_id then cm
else cm_add f.constr f.id cm in
{seq with
redexes=List.fold_right HP.add lf seq.redexes;
context=List.fold_right do_one lf seq.context}
let find_left t seq=List.hd (CM.find t seq.context)
(*let rev_left seq=
try
let lpat=(HP.maximum seq.redexes).pat in
left_reversible lpat
with Heap.EmptyHeap -> false
*)
let no_formula seq=
seq.redexes=HP.empty
let rec take_formula seq=
let hd=HP.maximum seq.redexes
and hp=HP.remove seq.redexes in
if hd.id == dummy_id then
let nseq={seq with redexes=hp} in
if seq.gl==hd.constr then
hd,nseq
else
take_formula nseq (* discarding deprecated goal *)
else
hd,{seq with
redexes=hp;
context=cm_remove hd.constr hd.id seq.context}
let empty_seq depth=
{redexes=HP.empty;
context=CM.empty;
latoms=[];
gl=(mkMeta 1);
glatom=None;
cnt=newcnt ();
history=History.empty;
depth=depth}
let create_with_ref_list l depth gl=
let f gr seq=
let c=constr_of_global gr in
let typ=(pf_type_of gl c) in
add_formula Hyp gr typ seq gl in
List.fold_right f l (empty_seq depth)
open Auto
let create_with_auto_hints l depth gl=
let seqref=ref (empty_seq depth) in
let f p_a_t =
match p_a_t.code with
Res_pf (c,_) | Give_exact c
| Res_pf_THEN_trivial_fail (c,_) ->
(try
let gr=global_of_constr c in
let typ=(pf_type_of gl c) in
seqref:=add_formula Hint gr typ !seqref gl
with Not_found->())
| _-> () in
let g _ l=List.iter f l in
let h dbname=
let hdb=
try
searchtable_map dbname
with Not_found->
error ("Firstorder: "^dbname^" : No such Hint database") in
Hint_db.iter g hdb in
List.iter h l;
!seqref
let print_cmap map=
let print_entry c l s=
let xc=Constrextern.extern_constr false (Global.env ()) c in
str "| " ++
Util.prlist Printer.pr_global l ++
str " : " ++
Ppconstr.pr_constr_expr xc ++
cut () ++
s in
msgnl (v 0
(str "-----" ++
cut () ++
CM.fold print_entry map (mt ()) ++
str "-----"))
|