blob: 8703045c63a5ffe1a18cdaec0afd8349db47fab2 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id: formula.mli 5920 2004-07-16 20:01:26Z herbelin $ *)
open Term
open Names
open Libnames
val qflag : bool ref
val red_flags: Closure.RedFlags.reds ref
val (=?) : ('a -> 'a -> int) -> ('b -> 'b -> int) ->
'a -> 'a -> 'b -> 'b -> int
val (==?) : ('a -> 'a -> 'b ->'b -> int) -> ('c -> 'c -> int) ->
'a -> 'a -> 'b -> 'b -> 'c ->'c -> int
type ('a,'b) sum = Left of 'a | Right of 'b
type counter = bool -> metavariable
val construct_nhyps : inductive -> Proof_type.goal Tacmach.sigma -> int array
val ind_hyps : int -> inductive -> constr list ->
Proof_type.goal Tacmach.sigma -> Sign.rel_context array
type atoms = {positive:constr list;negative:constr list}
type side = Hyp | Concl | Hint
val dummy_id: global_reference
val build_atoms : Proof_type.goal Tacmach.sigma -> counter ->
side -> constr -> bool * atoms
type right_pattern =
Rarrow
| Rand
| Ror
| Rfalse
| Rforall
| Rexists of metavariable*constr*bool
type left_arrow_pattern=
LLatom
| LLfalse of inductive*constr list
| LLand of inductive*constr list
| LLor of inductive*constr list
| LLforall of constr
| LLexists of inductive*constr list
| LLarrow of constr*constr*constr
type left_pattern=
Lfalse
| Land of inductive
| Lor of inductive
| Lforall of metavariable*constr*bool
| Lexists of inductive
| LA of constr*left_arrow_pattern
type t={id: global_reference;
constr: constr;
pat: (left_pattern,right_pattern) sum;
atoms: atoms}
(*exception Is_atom of constr*)
val build_formula : side -> global_reference -> types ->
Proof_type.goal Tacmach.sigma -> counter -> (t,types) sum
|